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Givens Factorization of Orthogonal Matrices

GT (i , j , α) =



1 ··· 0 ··· 0 ··· 0
...

. . .
...

...
...

0 ··· cos(α) ··· − sin(α) ··· 0

...
...

. . .
...

...
0 ··· sin(α) ··· cos(α) ··· 0

...
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...
. . .

...
0 ··· 0 ··· 0 ··· 1



Exact Givens Factorization

U = G1 . . .GN N =
d(d − 1)

2
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Approximate Givens Factorization

Approximate Givens Factorization

U ≈ G1 . . .GN N � d(d − 1)

2

computationally hard problem

Our Questions in this Context

1. Which orthogonal matrices can be effectively approximated?

(not all of them)

2. Which principles are behind effective approximation algorithms?

(sparsity-inducing algorithms)
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Motivation: Unitary Basis Transform / FFT

Advantageous Setting

Once computed, applied many times

Unitary Basis Transform

FFT: O
(
d2
)
→ O

(
d log(d)

)

Application: Graph Fourier Transform
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Which Matrices can be Effectively Approximated?

Theorem

Let ε > 0. If N =o
(
d2/ log(d)

)
, then as d →∞,

µ

{U ∈ U(d)

∣∣∣∣ inf
G1...GN

‖U −
∏
n

Gn‖2 ≤ ε

}→ 0 ,

where µ is the Haar measure over U(d).

• proof is based on an ε-covering argument

• suggests computational-to-statistical gap together with experimental results (details

at poster)
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K -planted Distribution over SO(d)

Sample U = G1 . . .GK

• choose subspace (ik , jk) uniformly with replacement

• choose rotation angle αk ∈ [0, 2π) uniformly
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Minimizing Sparsity-Inducing Norms over O(d)

GT
N . . .GT

N U ≈ I Û = G1 . . .GN

Approximation criterion∥∥∥U − Û
∥∥∥
F ,sym

:= min
P∈Pd

∥∥∥U − ÛP
∥∥∥
F

Better functions to be minimized greedily?

f (U) := d−1‖U‖1 = d−1
d∑

i ,j=1

∣∣Uij

∣∣
• Non-convex greedy step

• global optimum in O(d2) amortized time complexity
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