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Approximate Givens Factorization
d(d—1)

2
computationally hard problem

U~ Gi...Gy N <«

Our Questions in this Context
1. Which orthogonal matrices can be effectively approximated?
(not all of them)

2. Which principles are behind effective approximation algorithms?
(sparsity-inducing algorithms)
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Motivation: Unitary Basis Transform / FFT

Advantageous Setting

Once computed, applied many times

Unitary Basis Transform
FFT: O (d?) — O (dlog(d))

Application: Graph Fourier Transform



Which Matrices can be Effectively Approximated?

Theorem
Let € > 0. If N =o(d?/log(d)), then as d — oo,

0 ({U € U(d)’ St V- [T Gl < e}) -0,

where 1 is the Haar measure over U(d).



Which Matrices can be Effectively Approximated?

Theorem
Let € > 0. If N =o(d?/log(d)), then as d — oo,

UeU(d)| inf [[U=1]]Gh|2< —0,
({oewal oo
where 1 is the Haar measure over U(d).

e proof is based on an e-covering argument

e suggests computational-to-statistical gap together with experimental results (details
at poster)
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Sample U= Gl...GK
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e choose subspace (ik,jx) uniformly with replacement

e choose rotation angle ay € [0,27) uniformly
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Minimizing Sparsity-Inducing Norms over O(d)

Gy ...GiU~I U=G...Gy

Approximation criterion

‘= min
F,sym PePy

HU—U

U—OﬂL

Better functions to be minimized greedily?

d
f(U)=d7HUll,=d™" > |Uy|
ij=1
e Non-convex greedy step

e global optimum in O(d?) amortized time complexity
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https://github.com/tfrerix/givens-factorization
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