Richard Santiago

McGill University

International Conference on Machine Learning, 2019 Poster #162 on Wednesday 06:30 - 09:00 PM at Pacific Ballroom

Joint work with Bruce Shepherd (UBC)

Some Definitions

- Ground set $V = \{1, 2, \dots, n\}$ with power set $2^V = \{A : A \subseteq V\}$
- A set function $f: 2^V \to \mathbb{R}$ is submodular if $\forall A \subseteq B$ and $v \notin B$:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$

- Submodularity = diminishing returns property
- f is *monotone* if $f(A) \le f(B)$ for $A \subseteq B$

Submodularity in ML

- Sensing & Information gathering: Singh, Krause, Guestrin, Kaiser, Batalin '07
- Documment summarization: Lin and Bilmes '11
- Viral marketing: Kempe, Kleinberg, Tardos '03
- Data subset selection & Active learning: Wei, Iyer, Bilmes '15
- Robotics: Dey, Liu, Herbert, Bagnell '12
- Feature selection: Liu, Wei, Kirchhoff, Song, Bilmes '13
- Image segmentation: Kim, Xing, Fei-Fei, Kanade '11
- Diversity: Prasad, Jegelka, Batra '14

Submodular Optimization

Given a submodular function f and a family of feasible sets $\mathcal{F} \subseteq 2^V$:

Submodular Optimization Problems:

$$SO(\mathcal{F})$$
 min / max $f(S): S \in \mathcal{F}$

where:

- $\mathcal{F} = \{ S \subseteq V : |S| \le k \}$
- $\mathcal{F} = \{ S : S \subseteq V \}$
- $\mathcal{F} = \{\text{spanning trees of some graph } G\}$
- $\mathcal{F}=$ matroid or p-matroid intersection

Submodular Optimization Problems:

 $SO(\mathcal{F})$ min / max $f(S): S \in \mathcal{F}$

Submodular Optimization Problems:

$$SO(\mathcal{F})$$
 min / max $f(S): S \in \mathcal{F}$

Multi-Agent Submodular Optimization Problems:

$$\mathsf{MASO}(\mathcal{F}) \quad \mathit{min} \ / \ \mathit{max} \ \sum_{i=1}^k f_i(S_i) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

where \uplus denotes the union of disjoint sets.

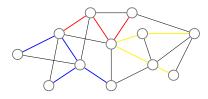
Submodular Optimization Problems:

$$SO(\mathcal{F})$$
 min / max $f(S): S \in \mathcal{F}$

Multi-Agent Submodular Optimization Problems:

$$\mathsf{MASO}(\mathcal{F}) \quad \mathit{min} \ / \ \mathit{max} \ \sum_{i=1}^k f_i(S_i) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

where \uplus denotes the union of disjoint sets.



Submodular Optimization Problems:

$$SO(\mathcal{F})$$
 min / max $f(S): S \in \mathcal{F}$

Multi-Agent Submodular Optimization Problems:

$$\mathsf{MASO}(\mathcal{F}) \quad \mathit{min} \ / \ \mathit{max} \ \sum_{i=1}^k f_i(S_i) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

where \uplus denotes the union of disjoint sets.

Multivariate Submodular Optimization Problems:

$$\mathsf{MVSO}(\mathcal{F}) \quad \textit{min} \ / \ \textit{max} \ \textit{g}(S_1, \ldots, S_k) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

$$SO(\mathcal{F})$$
 min $/$ max $f(S): S \in \mathcal{F}$

$$\mathsf{MASO}(\mathcal{F}) \quad \textit{min} \ / \ \textit{max} \ \sum_{i=1}^k f_i(S_i) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

$$\mathsf{MVSO}(\mathcal{F}) \quad \mathit{min} \ / \ \mathit{max} \ g(S_1, \ldots, S_k) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

Question 1: Is MVSO really more general than MASO?

$$SO(\mathcal{F})$$
 min $/$ max $f(S): S \in \mathcal{F}$

$$\mathsf{MASO}(\mathcal{F}) \quad \textit{min} \ / \ \textit{max} \ \sum_{i=1}^k f_i(S_i) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

$$\mathsf{MVSO}(\mathcal{F}) \quad \textit{min} \ / \ \textit{max} \ \textit{g}(S_1, \dots, S_k) : S_1 \uplus S_2 \uplus \dots \uplus S_k \in \mathcal{F}$$

Question 1: Is MVSO really more general than MASO? Yes!

Theorem

There is a tight $\tilde{\Omega}(n)$ gap between the approximation factors for MV-Min and MA-Min where all the functions are nonnegative and monotone.

$$\mathsf{SO}(\mathcal{F}) \qquad \textit{min} \ / \ \textit{max} \ f(S) : S \in \mathcal{F}$$
 $\mathsf{MASO}(\mathcal{F}) \qquad \textit{min} \ / \ \textit{max} \ \sum_{i=1}^k f_i(S_i) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$

$$\mathsf{MVSO}(\mathcal{F}) \quad \mathit{min} \ / \ \mathit{max} \ g(S_1, \ldots, S_k) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$$

Question 2: Given an α -approx for SO(\mathcal{F}), what can be said about MVSO(\mathcal{F})? [We refer to the additional incurred loss as the MV gap]

$$\mathsf{SO}(\mathcal{F}) \qquad \textit{min} \ / \ \textit{max} \ f(S) : S \in \mathcal{F}$$
 $\mathsf{MASO}(\mathcal{F}) \qquad \textit{min} \ / \ \textit{max} \ \sum_{i=1}^k f_i(S_i) : S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$

$$\mathsf{MVSO}(\mathcal{F}) \quad \textit{min} \ / \ \textit{max} \ \textit{g}(S_1, \dots, S_k) : S_1 \uplus S_2 \uplus \dots \uplus S_k \in \mathcal{F}$$

Question 2: Given an α -approx for $SO(\mathcal{F})$, what can be said about $MVSO(\mathcal{F})$? [We refer to the additional incurred loss as the MV gap]

Theorem (Maximization)

- ullet MV gap of 1-1/e for monotone functions and 0.385 for nonmonotone
- MV gap of 1 for several families such as matroids and p-systems
- Accelerated greedy and distributed algorithms still work for MVSO

Theorem (Minimization)

• Essentially tight approximation factors w.r.t. the curvature of g