Distributed Weighted Matching
via Randomized Composable Coresets

MohammadHossein Bateni

Google Research
New York, USA

Sepehr Assadi Vahab Mirrokni

22 Google Al

{ ¥ PRINCETON
UNIVERSITY

»

)

36th International Conference on Machine Learning
12 June 2019 — Long Beach, California, USA
Poster #161, Pacific Ballroom

Massive graphs

Everywhere: web graph, social networks, biological networks, etc.

AN

Massive graphs

Everywhere: web graph, social networks, biological networks, etc.

Matching: a collection of vertex-disjoint edges
» Clustering, partitioning
» Finding motifs in bioinformatics
» Trade marketing, online advertisement
» Kidney exchange
| 4

Linear algebra, matrix decomposition

Variants:
» Weighted vs unweighted
> Bipartite vs non-bipartite

Algorithmic results:
» First polytime algorithm: “Blossom” decomposition
> Extended to weighted case
> Fastest in time O(my/n)

Approximation algorithms:
» Greedy algorithm: 2-approx in O(mlog n) time
> 1+ ¢ approx in O(m/e) time

Sequential results

Variants:
» Weighted vs unweighted
> Bipartite vs non-bipartite

Algorithmic results:
» First polytime algorithm: “Blossom” decomposition
> Extended to weighted case
> Fastest in time O(my/n)

Approximation algorithms:
» Greedy algorithm: 2-approx in O(mlog n) time
> 1+ ¢ approx in O(m/e) time

Sequential results

Large scale

Sequential algorithms do not work
» O(m) runtime is prohibitive
» O(n) memory not available on a single machine

Large scale

Sequential algorithms do not work
» O(m) runtime is prohibitive
» O(n) memory not available on a single machine
» Simply reading input data once may take too long!

Large scale

Sequential algorithms do not work
» O(m) runtime is prohibitive
» O(n) memory not available on a single machine
» Simply reading input data once may take too long!

MapReduce: de facto industry standard
» Split data across many machines = T) [l
» Split computation into several rounds

~ S
» Data is sent to machines based on keys ‘; /m
3¢ PN

» Machines produce output for next round

Large scale

Sequential algorithms do not work
» O(m) runtime is prohibitive
» O(n) memory not available on a single machine
» Simply reading input data once may take too long!

MapReduce: de facto industry standard
» Split data across many machines o e
» Split computation into several rounds %
» Data is sent to machines based on keys
» Machines produce output for next round

Important: = _g
@ number of rounds i m
® number of machines
® memory on each machine
O amount of computation on each machine

Large scale

Simulation

“Greedy algorithms are practitioners’ best friends—they are intuitive, simple to implement,
and often lead to very good solutions. However, implementing greedy algorithms in a
distributed setting is challenging since the greedy choice is inherently sequential, and it
is not clear how to take advantage of the extra processing power.”

Two typical types of results:
@ Relatively large number of rounds to “faithfully” simulate the greedy algorithm.

® Very small number of rounds (one or two) for “weak” simulation, O(1) worse than
the greedy algorithm.

Large-scale results

Credit Approx Space Rounds
[LatMosSurVas11] 8 O(n) O(log n)
[CroStu14] 4 O(n) O(log n)

[AhnGuh15] 1+e¢ O(n) O(stlog n)
O(n) O(log n)

[HarLiaLiu18] 2

Large-scale results

Credit Approx Space Rounds
[LatMosSurVas11] 8 O(n) O(log n)
[CroStul4] 4 O(n) O(log n)
[AhnGuh15] l+e O(n) O(c7tlog n)
[HarLiaLiu18] 2 O(n) O(log n)
[CzuLacMad*18] 2+¢ O(n) 0 (7°0/9) . O(loglog n)?)
[AssBatBert19] 2+¢ O(n) 0(e=9(1/) . log log n)
[GamKalMitSvel8] 1+¢ O(n) O(c@(/=*) . log log n)

Large-scale results

Credit Approx Space Rounds
[LatMosSurVas11] 8 O(n) O(log n)
[CroStu14] 4 O(n) O(log n)
[AhnGuh15] 1+e¢ O(n) O(stlog n)
[HarLiaLiu18] 2 O(n) O(log n)
[CzuLacMad*18] 2+¢ O(n) 0 (7°0/9) . O(loglog n)?)
[AssBatBert19] 2+¢ O(n) 0(e=9(1/) . log log n)
[GamKalMitSvel8] 1+¢ O(n) O(c@(/=*) . log log n)
[LatMosSurVas11] 8 pl+e(1) 0(1)
[CroStul4] 4 pl+(1) 0(1)
[AhnGuh15] 14 ntt20 O(1/e)
[HarLiaLiu18] 2 pl+e0) 0(1)

Large-scale results

Credit Approx Space Rounds
[LatMosSurVas11] 8 O(n) O(log n)
[CroStu14] 4 O(n) O(log n)
[AhnGuh15] 1+e¢ O(n) O(stlog n)
[HarLiaLiu18] 2 O(n) O(log n)
[CzuLacMad*18] 2+¢ O(n) 0 (7°0/9) . O(loglog n)?)
[AssBatBert19] 2+¢ O(n) 0(e=9(1/) . log log n)
[GamKalMitSvel8] 1+¢ O(n) O(c@(/=*) . log log n)
[LatMosSurVas11] 8 pl+e(1) 0(1)
[CroStul4] 4 pl+(1) 0(1)
[AhnGuh15] 14 ntt20 O(1/e)
[HarLiaLiu18] 2 pl+e0) 0(1)
[AssKhal7] O(1) O(ny/n) 2
[AssBatBert19] 34+¢e O(ny/n) 2

Large-scale results

Credit Approx Space Rounds
[LatMosSurVas11] 8 O(n) O(log n)
[CroStu14] 4 O(n) O(log n)
[AhnGuh15] 1+e¢ O(n) O(stlog n)
[HarLiaLiu18] 2 O(n) O(log n)
[CzuLacMad*18] 2+¢ O(n) 0 (7°0/9) . O(loglog n)?)
[AssBatBert19] 2+¢ O(n) 0(e=9(1/) . log log n)
[GamKalMitSvel8] 1+¢ O(n) O(c@(/=*) . log log n)
[LatMosSurVas11] 8 pl+e(1) 0(1)
[CroStul4] 4 pl+(1) 0(1)
[AhnGuh15] 14 ntt20 O(1/e)
[HarLiaLiu18] 2 pl+e0) 0(1)
[AssKha17] O(1) O(ny/n) 2
[AssBatBert19] 3+¢ O(nyn) 2
Our work 2+e O(nyn) 2

Composable coresets

Basic idea

subgraph G;
/ subgraph G>

graph G

subgraph G,

Composable coresets

Basic idea

{ subgraph G1 »E.»’

(subgraph Gz 3»5.»‘
/ O
s

YT Ty
{J subgraph Gk »E.»’
A= ~

Composable coresets

Basic idea

Composable coresets

Basic idea

{: sub;raph G1 »EI»~\
/\(sub;raph G> }»EI»‘—)

AN A N
J,\/f D

{ graph G)

\«A/\f

< Suhgraph Gk »E.»‘

AN~

Composable coresets

Basic idea

D

i%“,?%:a’i\hf{i>->ﬁ|"\
g / »> E:

/{ subgraph G»

o

~

e A

[graph G

(subgraph G >»E.»

Composable coresets

Basic idea

N

1. How to “partition”?

s
/ subgraph Gz 3»5.»‘ »

<)
LA / ‘K«\ AN T 3 HOW tO

) \ = " “combine’ 7
_ graph G) |2. How to “solve”? |

YT Ty
{J subgraph Gy »E.»’
o f/

Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a partitioning of G; send each edge e € G to a subgraph G;
arbitrarily.
» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.
» ALG outputs an a-approx composable coreset of size s for a problem P iff

P(ALG(G1)U...UALG(Gk)) is an a-approx to P(G).

Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a partitioning of G; send each edge e € G to a subgraph G;
arbitrarily.
» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.
» ALG outputs an a-approx composable coreset of size s for a problem P iff

P(ALG(G1)U...UALG(Gk)) is an a-approx to P(G).

» Design ALG for small o (quality) and s (size).

Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a partitioning of G; send each edge e € G to a subgraph G;
arbitrarily.
» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.

» ALG outputs an a-approx composable coreset of size s for a problem P iff
P(ALG(G1)U...UALG(Gk)) is an a-approx to P(G).

» Design ALG for small (y (quality) and s (size).
> n°(1) approx requires n°~°(!) space

Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a random partitioning of G; send each edge e € G to a

subgraph G; uniformly at random.

» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.

» ALG outputs an a-approx randomized composable coreset of size s for a problem
P iff
P(ALG(G1)U...UALG(Gg)) is an a-approx to P(G).

» Design ALG for small o (quality) and s (size).
> n°() approx requires n?°() space

» Randomized coresets were introduced by for submodular maximization.

Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a random p-partitioning of G; send each edge e € G to

subgraphs G; uniformly at random.

» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.

» ALG outputs an a-approx randomized composable coreset of size s and

multiplicity ;. for a problem P iff
P(ALG(Gy)U...UALG(Gg)) is an a-approx to P(G).

» Design ALG for small o (quality) and s (size).
> n°() approx requires n?°() space .
» Randomized coresets were introduced by for submodular maximization.

Composable coresets

Mathematic formulation

Definition

» Let Gi,..., G, be a random p-partitioning of G; send each edge e € G to
subgraphs G; uniformly at random.

» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.

» ALG outputs an a-approx randomized composable coreset of size s and
multiplicity ;. for a problem P iff
P(ALG(Gy)U...UALG(Gg)) is an a-approx to P(G).

» Maximum-matching coresets do not give ov < 2, but sparsification (EDCS) +
randomized coresets give o« = 1.5 + ¢ approx +

Composable coresets

Mathematic formulation

Definition

» Let Gi,..., G, be a random p-partitioning of G; send each edge e € G to
subgraphs G; uniformly at random.

» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.

» ALG outputs an a-approx randomized composable coreset of size s and
multiplicity ;. for a problem P iff
P(ALG(Gy)U...UALG(Gg)) is an a-approx to P(G).

» Maximum-matching coresets do not give ov < 2, but sparsification (EDCS) +
randomized coresets give o« = 1.5 + ¢ approx +

We present a simple (2 + ¢)-approximation randomized coreset with
mulitplicity ;o = O(% log %) for maximum-weight matching.

Algorithm

® Send each edge to /1 = O(%) machines.

® Sort edges according to weight on each machine (with consistent tie-breaking),
and greedily find a maximal matching (the coresets).

® Find a maximum matching M of the union of coresets H.

Algorithm

® Send each edge to /1 = O(%) machines.

® Sort edges according to weight on each machine (with consistent tie-breaking),
and greedily find a maximal matching (the coresets).

® Find a maximum matching M of the union of coresets H.

» This gives a 2 + ¢ approx.

Algorithm

® Send each edge to /1 = O(%) machines.

® Sort edges according to weight on each machine (with consistent tie-breaking),
and greedily find a maximal matching (the coresets).

® Find a maximum matching M of the union of coresets H.

» This gives a 2 + ¢ approx.
» Simple, scalable implementation except for Step 3.

Algorithm

® Send each edge to /1 = O(%) machines.

® Sort edges according to weight on each machine (with consistent tie-breaking),
and greedily find a maximal matching (the coresets).

® Find a maximum matching M of the union of coresets H.

» This gives a 2 + ¢ approx.
» Simple, scalable implementation except for Step 3.

» Replacing Step 3 with a greedy maximal matching algorithm is provably a 3 + ¢
approx (not a 4 + ¢ approx).

Algorithm

® Send each edge to /1 = O(%) machines.

® Sort edges according to weight on each machine (with consistent tie-breaking),
and greedily find a maximal matching (the coresets).

® Find a maximum matching M of the union of coresets H.

» This gives a 2 + ¢ approx.
» Simple, scalable implementation except for Step 3.

» Replacing Step 3 with a greedy maximal matching algorithm is provably a 3 + ¢
approx (not a 4 + ¢ approx).

> Better analysis uses “consistency” of maximal (vs. maximum) matching coresets.

Proof idea

» Machine / works on subgraph G; and contributes maximal matching M; to coreset
H=uU;M;.
» Compare to a reference maximum-weight matching M*.

Proof idea

» Machine / works on subgraph G; and contributes maximal matching M; to coreset
H=uU;M;.
» Compare to a reference maximum-weight matching M*.

> Let permutation 7 of edges be the consistent sorting order.
> Edge e € M* is free on machine i iff its endpoints are available when e “arrives.”

» Otherwise e € M* is blocked on machine /.
» Maybe e is missing on machine /.

Proof idea

» Machine / works on subgraph G; and contributes maximal matching M; to coreset
H=uU;M;.

» Compare to a reference maximum-weight matching M*.

> Let permutation 7 of edges be the consistent sorting order.

> Edge e € M* is free on machine i iff its endpoints are available when e “arrives.”

» Otherwise e € M* is blocked on machine /.
» Maybe e is missing on machine /.

@ Subgraphs G; have the same distribution; focus on G; and M.

Proof idea

» Machine / works on subgraph G; and contributes maximal matching M; to coreset
H=uU;M;.
» Compare to a reference maximum-weight matching M*.

> Let permutation 7 of edges be the consistent sorting order.
> Edge e € M* is free on machine i iff its endpoints are available when e “arrives.”

» Otherwise e € M* is blocked on machine /.
» Maybe e is missing on machine /.

@ Subgraphs G; have the same distribution; focus on G; and M.
® A blocked edge has a heavier edge in M; as its “certificate.”
» Use it in the charging argument for M.

Proof idea

» Machine / works on subgraph G; and contributes maximal matching M; to coreset
H=uU;M;.
» Compare to a reference maximum-weight matching M*.

> Let permutation 7 of edges be the consistent sorting order.
> Edge e € M* is free on machine i iff its endpoints are available when e “arrives.”

» Otherwise e € M* is blocked on machine /.
» Maybe e is missing on machine /.

@ Subgraphs G; have the same distribution; focus on G; and M.
® A blocked edge has a heavier edge in M; as its “certificate.”

» Use it in the charging argument for M.
© Free edge part of G; will make it to M; and H.

» Free edges in M, U M5 U ... compensate the free edges in M.
» Subtle argument for “augmentation.”

In practice

» Focus on 2-round algorithms: 19] too complicated

> without not viable for weighted matching

In practice

» Focus on 2-round algorithms: 19] too complicated
> without not viable for weighted matching
> with not as good as the new algorithm
Dataset Speed-up
V| |E| A This work
Friendster 66M 550B 2.1M 4.7x 130x
Orkut 3M 21B 900K 1.4x 17x
LiveJournal 4.8M 3.9B 444K 2.5x 6x
DBLP 1.5M 59M 1961 1.2x 3x

» Focus on 2-round algorithms:

>
>

+

too complicated

without not viable for weighted matching
with not as good as the new algorithm
Dataset Quality
V| |E| A This work
Friendster 66M 550B 2.1M 94.4% 99.8%
Orkut 3M 21B 900K 92.4% 98.9%
LiveJournal 4.8M 3.9B 444K 96.5% 99.9%
DBLP 1.5M 59M 1961 92.4% 99.6%

In practice

» Focus on 2-round algorithms: 19] too complicated
> without not viable for weighted matching
> with not as good as the new algorithm

» Multiplicity 2 or 3 is sufficient

100.00% = Cardinality (k=10)
== Weight (k=10)

Cardinality (k=20)
w— Weight (k=20)

98 00%

96.00%

94.00%

2 3

Multiplicity

In practice

Summary

» A simple, scalable algorithm for maximum-weight matching with 2 + ¢
approximation.
» Uses greedy algorithm for coreset construction.
» Uses multiplicity.

» Good performance in practice.
» Small multiplicity suffices.
> Beats prior algorithms.
» Huge speed-up of sequential algorithm, but faithful simulation.

Summary

> A simple, scalable algorithm for maximum-weight matching with 2 + ¢
approximation.

» Uses greedy algorithm for coreset construction.
» Uses multiplicity.

» Good performance in practice.

» Small multiplicity suffices.
> Beats prior algorithms.
» Huge speed-up of sequential algorithm, but faithful simulation.

Thanks!

Poster #161
Pacific Ballroom

Biblios |

Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal
algorithms for maximum matching under resource constraints. In SPAA, pages 202-211, 2015.

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff Stein.
Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In SODA,
pages 1616-1635, 2019.

Sepehr Assadi and Sanjeev Khanna. Randomized composable coresets for matching and vertex
cover. In SPAA, pages 3-12, 2017.

Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In SODA, pages 1345-1364,
2016.

Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching, via
unweighted matching. In APPROX, pages 96-104, 2014.

Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak, and Piotr
Sankowski. Round compression for parallel matching algorithms. In STOC, pages 471-484, 2018.

) & & W =

Biblios |l

Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM,
61(1):1:1-1:23, 2014.

Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of
the National Bureau of Standards B, 69(125-130):55-56, 1965.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449-467, 1965.

Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-matching
problems. J. ACM, 38(4):815-853, 1991

Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via
unweighted augmentations. CoRR, abs/1811.02760. To appear in PODC 2019., 2018.

Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms in the
mapreduce model. In SPAA, pages 43-52, 2018.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms
in mapreduce and streaming. In SPAA, pages 1-10, 2013.

Biblios Il

Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method for
solving graph problems in mapreduce. In SPAA, pages 85-94, 2011.

Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for
distributed submodular maximization. In STOC, pages 153-162, 2015.

