
Distributed Weighted Matching

via Randomized Composable Coresets

MohammadHossein Bateni

Google Research
New York, USA

Sepehr Assadi Vahab Mirrokni

36th International Conference on Machine Learning
12 June 2019 � Long Beach, California, USA

Poster #161, Paci�c Ballroom

Massive graphs

Everywhere: web graph, social networks, biological networks, etc.

Matching: a collection of vertex-disjoint edges

I Clustering, partitioning

I Finding motifs in bioinformatics

I Trade marketing, online advertisement

I Kidney exchange

I Linear algebra, matrix decomposition

Massive graphs

Everywhere: web graph, social networks, biological networks, etc.

Matching: a collection of vertex-disjoint edges

I Clustering, partitioning

I Finding motifs in bioinformatics

I Trade marketing, online advertisement

I Kidney exchange

I Linear algebra, matrix decomposition

Sequential results

Variants:

I Weighted vs unweighted

I Bipartite vs non-bipartite

Algorithmic results:

I First polytime algorithm: �Blossom� decomposition [Edm65a]

I Extended to weighted case [Edm65b]

I Fastest in time Õ(m
√
n) [GabTar91]

Approximation algorithms:

I Greedy algorithm: 2-approx in O(m log n) time

I 1+ ε approx in Õ(m/ε) time [DuaPet14]

Sequential results

Variants:

I Weighted vs unweighted

I Bipartite vs non-bipartite

Algorithmic results:

I First polytime algorithm: �Blossom� decomposition [Edm65a]

I Extended to weighted case [Edm65b]

I Fastest in time Õ(m
√
n) [GabTar91]

Approximation algorithms:

I Greedy algorithm: 2-approx in O(m log n) time

I 1+ ε approx in Õ(m/ε) time [DuaPet14]

Large scale

Sequential algorithms do not work
I O(m) runtime is prohibitive
I O(n) memory not available on a single machine
I Simply reading input data once may take too long!

MapReduce: de facto industry standard
I Split data across many machines
I Split computation into several rounds
I Data is sent to machines based on keys
I Machines produce output for next round

Important:

1 number of rounds

2 number of machines

3 memory on each machine

4 amount of computation on each machine

Large scale

Sequential algorithms do not work
I O(m) runtime is prohibitive
I O(n) memory not available on a single machine
I Simply reading input data once may take too long!

MapReduce: de facto industry standard
I Split data across many machines
I Split computation into several rounds
I Data is sent to machines based on keys
I Machines produce output for next round

Important:

1 number of rounds

2 number of machines

3 memory on each machine

4 amount of computation on each machine

Large scale

Sequential algorithms do not work
I O(m) runtime is prohibitive
I O(n) memory not available on a single machine
I Simply reading input data once may take too long!

MapReduce: de facto industry standard
I Split data across many machines
I Split computation into several rounds
I Data is sent to machines based on keys
I Machines produce output for next round

Important:

1 number of rounds

2 number of machines

3 memory on each machine

4 amount of computation on each machine

Large scale

Sequential algorithms do not work
I O(m) runtime is prohibitive
I O(n) memory not available on a single machine
I Simply reading input data once may take too long!

MapReduce: de facto industry standard
I Split data across many machines
I Split computation into several rounds
I Data is sent to machines based on keys
I Machines produce output for next round

Important:

1 number of rounds

2 number of machines

3 memory on each machine

4 amount of computation on each machine

Large scale
Simulation

�Greedy algorithms are practitioners' best friends�they are intuitive, simple to implement,

and often lead to very good solutions. However, implementing greedy algorithms in a

distributed setting is challenging since the greedy choice is inherently sequential, and it

is not clear how to take advantage of the extra processing power.�

� [KumMosVasVat13]

Two typical types of results:

1 Relatively large number of rounds to �faithfully� simulate the greedy algorithm.

2 Very small number of rounds (one or two) for �weak� simulation, O(1) worse than
the greedy algorithm.

Large-scale results

Credit Approx Space Rounds

[LatMosSurVas11] 8 Õ(n) O(log n)

[CroStu14] 4 Õ(n) O(log n)

[AhnGuh15] 1+ ε Õ(n) O(ε−1log n)

[HarLiaLiu18] 2 Õ(n) O(log n)

[CzuLacMad+18] 2+ ε Õ(n) O
(
ε−Θ(1/ε) · O(log log n)2

)
[AssBatBer+19] 2+ ε Õ(n) O(ε−Θ(1/ε) · log log n)

[GamKalMitSve18] 1+ ε Õ(n) O(ε−Θ(1/ε2) · log log n)
[LatMosSurVas11] 8 n1+Ω(1) O(1)

[CroStu14] 4 n1+Ω(1) O(1)

[AhnGuh15] 1+ ε n1+Ω(1) O(1/ε)

[HarLiaLiu18] 2 n1+Ω(1) O(1)

[AssKha17] O(1) Õ(n
√
n) 2

[AssBatBer+19] 3+ ε Õ(n
√
n) 2

Our work 2+ ε O(n
√
n) 2

Large-scale results

Credit Approx Space Rounds

[LatMosSurVas11] 8 Õ(n) O(log n)

[CroStu14] 4 Õ(n) O(log n)

[AhnGuh15] 1+ ε Õ(n) O(ε−1log n)

[HarLiaLiu18] 2 Õ(n) O(log n)

[CzuLacMad+18] 2+ ε Õ(n) O
(
ε−Θ(1/ε) · O(log log n)2

)
[AssBatBer+19] 2+ ε Õ(n) O(ε−Θ(1/ε) · log log n)

[GamKalMitSve18] 1+ ε Õ(n) O(ε−Θ(1/ε2) · log log n)

[LatMosSurVas11] 8 n1+Ω(1) O(1)

[CroStu14] 4 n1+Ω(1) O(1)

[AhnGuh15] 1+ ε n1+Ω(1) O(1/ε)

[HarLiaLiu18] 2 n1+Ω(1) O(1)

[AssKha17] O(1) Õ(n
√
n) 2

[AssBatBer+19] 3+ ε Õ(n
√
n) 2

Our work 2+ ε O(n
√
n) 2

Large-scale results

Credit Approx Space Rounds

[LatMosSurVas11] 8 Õ(n) O(log n)

[CroStu14] 4 Õ(n) O(log n)

[AhnGuh15] 1+ ε Õ(n) O(ε−1log n)

[HarLiaLiu18] 2 Õ(n) O(log n)

[CzuLacMad+18] 2+ ε Õ(n) O
(
ε−Θ(1/ε) · O(log log n)2

)
[AssBatBer+19] 2+ ε Õ(n) O(ε−Θ(1/ε) · log log n)

[GamKalMitSve18] 1+ ε Õ(n) O(ε−Θ(1/ε2) · log log n)
[LatMosSurVas11] 8 n1+Ω(1) O(1)

[CroStu14] 4 n1+Ω(1) O(1)

[AhnGuh15] 1+ ε n1+Ω(1) O(1/ε)

[HarLiaLiu18] 2 n1+Ω(1) O(1)

[AssKha17] O(1) Õ(n
√
n) 2

[AssBatBer+19] 3+ ε Õ(n
√
n) 2

Our work 2+ ε O(n
√
n) 2

Large-scale results

Credit Approx Space Rounds

[LatMosSurVas11] 8 Õ(n) O(log n)

[CroStu14] 4 Õ(n) O(log n)

[AhnGuh15] 1+ ε Õ(n) O(ε−1log n)

[HarLiaLiu18] 2 Õ(n) O(log n)

[CzuLacMad+18] 2+ ε Õ(n) O
(
ε−Θ(1/ε) · O(log log n)2

)
[AssBatBer+19] 2+ ε Õ(n) O(ε−Θ(1/ε) · log log n)

[GamKalMitSve18] 1+ ε Õ(n) O(ε−Θ(1/ε2) · log log n)
[LatMosSurVas11] 8 n1+Ω(1) O(1)

[CroStu14] 4 n1+Ω(1) O(1)

[AhnGuh15] 1+ ε n1+Ω(1) O(1/ε)

[HarLiaLiu18] 2 n1+Ω(1) O(1)

[AssKha17] O(1) Õ(n
√
n) 2

[AssBatBer+19] 3+ ε Õ(n
√
n) 2

Our work 2+ ε O(n
√
n) 2

Large-scale results

Credit Approx Space Rounds

[LatMosSurVas11] 8 Õ(n) O(log n)

[CroStu14] 4 Õ(n) O(log n)

[AhnGuh15] 1+ ε Õ(n) O(ε−1log n)

[HarLiaLiu18] 2 Õ(n) O(log n)

[CzuLacMad+18] 2+ ε Õ(n) O
(
ε−Θ(1/ε) · O(log log n)2

)
[AssBatBer+19] 2+ ε Õ(n) O(ε−Θ(1/ε) · log log n)

[GamKalMitSve18] 1+ ε Õ(n) O(ε−Θ(1/ε2) · log log n)
[LatMosSurVas11] 8 n1+Ω(1) O(1)

[CroStu14] 4 n1+Ω(1) O(1)

[AhnGuh15] 1+ ε n1+Ω(1) O(1/ε)

[HarLiaLiu18] 2 n1+Ω(1) O(1)

[AssKha17] O(1) Õ(n
√
n) 2

[AssBatBer+19] 3+ ε Õ(n
√
n) 2

Our work 2+ ε O(n
√
n) 2

Composable coresets
Basic idea

graph G

subgraph G1

subgraph G2

subgraph Gk

...

coreset H1

coreset H2

coreset Hk

...

coreset H

solution

1. How to �partition�?

2. How to �solve�?

3. How to

�combine�?

Composable coresets
Basic idea

graph G

subgraph G1

subgraph G2

subgraph Gk

...

coreset H1

coreset H2

coreset Hk

...

coreset H

solution

1. How to �partition�?

2. How to �solve�?

3. How to

�combine�?

Composable coresets
Basic idea

graph G

subgraph G1

subgraph G2

subgraph Gk

...

coreset H1

coreset H2

coreset Hk

...

coreset H

solution

1. How to �partition�?

2. How to �solve�?

3. How to

�combine�?

Composable coresets
Basic idea

graph G

subgraph G1

subgraph G2

subgraph Gk

...

coreset H1

coreset H2

coreset Hk

...

coreset H

solution

1. How to �partition�?

2. How to �solve�?

3. How to

�combine�?

Composable coresets
Basic idea

graph G

subgraph G1

subgraph G2

subgraph Gk

...

coreset H1

coreset H2

coreset Hk

...

coreset H

solution

1. How to �partition�?

2. How to �solve�?

3. How to

�combine�?

Composable coresets
Basic idea

graph G

subgraph G1

subgraph G2

subgraph Gk

...

coreset H1

coreset H2

coreset Hk

...

coreset H

solution

1. How to �partition�?

2. How to �solve�?

3. How to

�combine�?

Composable coresets
Mathematic formulation

De�nition

I Let G1, . . . ,Gk be a partitioning of G ; send each edge e ∈ G to a subgraph Gi

arbitrarily.

I Consider an algorithm ALG that given Gi outputs a subgraph Hi of Gi with s

edges.

I ALG outputs an α-approx composable coreset of size s for a problem P i�

P(ALG(G1) ∪ . . . ∪ALG(Gk)) is an α-approx to P(G).

I Design ALG for small α (quality) and s (size).

I no(1) approx requires n2−o(1) space [AssKhaLiYar16].
I Randomized coresets were introduced by [MirZad15] for submodular maximization.
I Maximum-matching coresets do not give α < 2, but sparsi�cation (EDCS) +

randomized coresets give α = 1.5+ ε approx [AssBatBer+19].

We present a simple (2+ ε)-approximation randomized coreset with

mulitplicity µ = O(1ε log
1
ε) for maximum-weight matching.

Composable coresets
Mathematic formulation

De�nition

I Let G1, . . . ,Gk be a partitioning of G ; send each edge e ∈ G to a subgraph Gi

arbitrarily.

I Consider an algorithm ALG that given Gi outputs a subgraph Hi of Gi with s

edges.

I ALG outputs an α-approx composable coreset of size s for a problem P i�

P(ALG(G1) ∪ . . . ∪ALG(Gk)) is an α-approx to P(G).

I Design ALG for small α (quality) and s (size).

I no(1) approx requires n2−o(1) space [AssKhaLiYar16].
I Randomized coresets were introduced by [MirZad15] for submodular maximization.
I Maximum-matching coresets do not give α < 2, but sparsi�cation (EDCS) +

randomized coresets give α = 1.5+ ε approx [AssBatBer+19].

We present a simple (2+ ε)-approximation randomized coreset with

mulitplicity µ = O(1ε log
1
ε) for maximum-weight matching.

Composable coresets
Mathematic formulation

De�nition

I Let G1, . . . ,Gk be a partitioning of G ; send each edge e ∈ G to a subgraph Gi

arbitrarily.

I Consider an algorithm ALG that given Gi outputs a subgraph Hi of Gi with s

edges.

I ALG outputs an α-approx composable coreset of size s for a problem P i�

P(ALG(G1) ∪ . . . ∪ALG(Gk)) is an α-approx to P(G).

I Design ALG for small α (quality) and s (size).
I no(1) approx requires n2−o(1) space [AssKhaLiYar16].

I Randomized coresets were introduced by [MirZad15] for submodular maximization.
I Maximum-matching coresets do not give α < 2, but sparsi�cation (EDCS) +

randomized coresets give α = 1.5+ ε approx [AssBatBer+19].

We present a simple (2+ ε)-approximation randomized coreset with

mulitplicity µ = O(1ε log
1
ε) for maximum-weight matching.

Composable coresets
Mathematic formulation

De�nition

I Let G1, . . . ,Gk be a random partitioning of G ; send each edge e ∈ G to a

subgraph Gi uniformly at random.

I Consider an algorithm ALG that given Gi outputs a subgraph Hi of Gi with s

edges.

I ALG outputs an α-approx randomized composable coreset of size s for a problem

P i�

P(ALG(G1) ∪ . . . ∪ALG(Gk)) is an α-approx to P(G).

I Design ALG for small α (quality) and s (size).
I no(1) approx requires n2−o(1) space [AssKhaLiYar16].
I Randomized coresets were introduced by [MirZad15] for submodular maximization.

I Maximum-matching coresets do not give α < 2, but sparsi�cation (EDCS) +

randomized coresets give α = 1.5+ ε approx [AssBatBer+19].

We present a simple (2+ ε)-approximation randomized coreset with

mulitplicity µ = O(1ε log
1
ε) for maximum-weight matching.

Composable coresets
Mathematic formulation

De�nition

I Let G1, . . . ,Gk be a random µ-partitioning of G ; send each edge e ∈ G to µ
subgraphs Gi uniformly at random.

I Consider an algorithm ALG that given Gi outputs a subgraph Hi of Gi with s

edges.

I ALG outputs an α-approx randomized composable coreset of size s and

multiplicity µ for a problem P i�

P(ALG(G1) ∪ . . . ∪ALG(Gk)) is an α-approx to P(G).

I Design ALG for small α (quality) and s (size).
I no(1) approx requires n2−o(1) space [AssKhaLiYar16].
I Randomized coresets were introduced by [MirZad15] for submodular maximization.

I Maximum-matching coresets do not give α < 2, but sparsi�cation (EDCS) +

randomized coresets give α = 1.5+ ε approx [AssBatBer+19].

We present a simple (2+ ε)-approximation randomized coreset with

mulitplicity µ = O(1ε log
1
ε) for maximum-weight matching.

Composable coresets
Mathematic formulation

De�nition

I Let G1, . . . ,Gk be a random µ-partitioning of G ; send each edge e ∈ G to µ
subgraphs Gi uniformly at random.

I Consider an algorithm ALG that given Gi outputs a subgraph Hi of Gi with s

edges.

I ALG outputs an α-approx randomized composable coreset of size s and

multiplicity µ for a problem P i�

P(ALG(G1) ∪ . . . ∪ALG(Gk)) is an α-approx to P(G).

I Maximum-matching coresets do not give α < 2, but sparsi�cation (EDCS) +

randomized coresets give α = 1.5+ ε approx [AssBatBer+19].

We present a simple (2+ ε)-approximation randomized coreset with

mulitplicity µ = O(1ε log
1
ε) for maximum-weight matching.

Composable coresets
Mathematic formulation

De�nition

I Let G1, . . . ,Gk be a random µ-partitioning of G ; send each edge e ∈ G to µ
subgraphs Gi uniformly at random.

I Consider an algorithm ALG that given Gi outputs a subgraph Hi of Gi with s

edges.

I ALG outputs an α-approx randomized composable coreset of size s and

multiplicity µ for a problem P i�

P(ALG(G1) ∪ . . . ∪ALG(Gk)) is an α-approx to P(G).

I Maximum-matching coresets do not give α < 2, but sparsi�cation (EDCS) +

randomized coresets give α = 1.5+ ε approx [AssBatBer+19].

We present a simple (2+ ε)-approximation randomized coreset with

mulitplicity µ = O(1ε log
1
ε) for maximum-weight matching.

Algorithm

1 Send each edge to µ = O
(log 1/ε

ε

)
machines.

2 Sort edges according to weight on each machine (with consistent tie-breaking),

and greedily �nd a maximal matching (the coresets).

3 Find a maximum matching M of the union of coresets H.

I This gives a 2+ ε approx.

I Simple, scalable implementation except for Step 3.
I Replacing Step 3 with a greedy maximal matching algorithm is provably a 3+ ε

approx (not a 4+ ε approx).

I Better analysis uses �consistency� of maximal (vs. maximum) matching coresets.

Algorithm

1 Send each edge to µ = O
(log 1/ε

ε

)
machines.

2 Sort edges according to weight on each machine (with consistent tie-breaking),

and greedily �nd a maximal matching (the coresets).

3 Find a maximum matching M of the union of coresets H.

I This gives a 2+ ε approx.

I Simple, scalable implementation except for Step 3.
I Replacing Step 3 with a greedy maximal matching algorithm is provably a 3+ ε

approx (not a 4+ ε approx).

I Better analysis uses �consistency� of maximal (vs. maximum) matching coresets.

Algorithm

1 Send each edge to µ = O
(log 1/ε

ε

)
machines.

2 Sort edges according to weight on each machine (with consistent tie-breaking),

and greedily �nd a maximal matching (the coresets).

3 Find a maximum matching M of the union of coresets H.

I This gives a 2+ ε approx.

I Simple, scalable implementation except for Step 3.
I Replacing Step 3 with a greedy maximal matching algorithm is provably a 3+ ε

approx (not a 4+ ε approx).

I Better analysis uses �consistency� of maximal (vs. maximum) matching coresets.

Algorithm

1 Send each edge to µ = O
(log 1/ε

ε

)
machines.

2 Sort edges according to weight on each machine (with consistent tie-breaking),

and greedily �nd a maximal matching (the coresets).

3 Find a maximum matching M of the union of coresets H.

I This gives a 2+ ε approx.

I Simple, scalable implementation except for Step 3.
I Replacing Step 3 with a greedy maximal matching algorithm is provably a 3+ ε

approx (not a 4+ ε approx).

I Better analysis uses �consistency� of maximal (vs. maximum) matching coresets.

Algorithm

1 Send each edge to µ = O
(log 1/ε

ε

)
machines.

2 Sort edges according to weight on each machine (with consistent tie-breaking),

and greedily �nd a maximal matching (the coresets).

3 Find a maximum matching M of the union of coresets H.

I This gives a 2+ ε approx.

I Simple, scalable implementation except for Step 3.
I Replacing Step 3 with a greedy maximal matching algorithm is provably a 3+ ε

approx (not a 4+ ε approx).

I Better analysis uses �consistency� of maximal (vs. maximum) matching coresets.

Proof idea

I Machine i works on subgraph Gi and contributes maximal matching Mi to coreset

H = ∪iMi .

I Compare to a reference maximum-weight matching M∗.

I Let permutation π of edges be the consistent sorting order.

I Edge e ∈ M∗ is free on machine i i� its endpoints are available when e �arrives.�
I Otherwise e ∈ M

∗ is blocked on machine i .
I Maybe e is missing on machine i .

1 Subgraphs Gi have the same distribution; focus on G1 and M1.

2 A blocked edge has a heavier edge in Mi as its �certi�cate.�
I Use it in the charging argument for M1.

3 Free edge part of Gi will make it to Mi and H.
I Free edges in M2 ∪M3 ∪ . . . compensate the free edges in M1.
I Subtle argument for �augmentation.�

Proof idea

I Machine i works on subgraph Gi and contributes maximal matching Mi to coreset

H = ∪iMi .

I Compare to a reference maximum-weight matching M∗.

I Let permutation π of edges be the consistent sorting order.

I Edge e ∈ M∗ is free on machine i i� its endpoints are available when e �arrives.�
I Otherwise e ∈ M

∗ is blocked on machine i .
I Maybe e is missing on machine i .

1 Subgraphs Gi have the same distribution; focus on G1 and M1.

2 A blocked edge has a heavier edge in Mi as its �certi�cate.�
I Use it in the charging argument for M1.

3 Free edge part of Gi will make it to Mi and H.
I Free edges in M2 ∪M3 ∪ . . . compensate the free edges in M1.
I Subtle argument for �augmentation.�

Proof idea

I Machine i works on subgraph Gi and contributes maximal matching Mi to coreset

H = ∪iMi .

I Compare to a reference maximum-weight matching M∗.

I Let permutation π of edges be the consistent sorting order.

I Edge e ∈ M∗ is free on machine i i� its endpoints are available when e �arrives.�
I Otherwise e ∈ M

∗ is blocked on machine i .
I Maybe e is missing on machine i .

1 Subgraphs Gi have the same distribution; focus on G1 and M1.

2 A blocked edge has a heavier edge in Mi as its �certi�cate.�
I Use it in the charging argument for M1.

3 Free edge part of Gi will make it to Mi and H.
I Free edges in M2 ∪M3 ∪ . . . compensate the free edges in M1.
I Subtle argument for �augmentation.�

Proof idea

I Machine i works on subgraph Gi and contributes maximal matching Mi to coreset

H = ∪iMi .

I Compare to a reference maximum-weight matching M∗.

I Let permutation π of edges be the consistent sorting order.

I Edge e ∈ M∗ is free on machine i i� its endpoints are available when e �arrives.�
I Otherwise e ∈ M

∗ is blocked on machine i .
I Maybe e is missing on machine i .

1 Subgraphs Gi have the same distribution; focus on G1 and M1.

2 A blocked edge has a heavier edge in Mi as its �certi�cate.�
I Use it in the charging argument for M1.

3 Free edge part of Gi will make it to Mi and H.
I Free edges in M2 ∪M3 ∪ . . . compensate the free edges in M1.
I Subtle argument for �augmentation.�

Proof idea

I Machine i works on subgraph Gi and contributes maximal matching Mi to coreset

H = ∪iMi .

I Compare to a reference maximum-weight matching M∗.

I Let permutation π of edges be the consistent sorting order.

I Edge e ∈ M∗ is free on machine i i� its endpoints are available when e �arrives.�
I Otherwise e ∈ M

∗ is blocked on machine i .
I Maybe e is missing on machine i .

1 Subgraphs Gi have the same distribution; focus on G1 and M1.

2 A blocked edge has a heavier edge in Mi as its �certi�cate.�
I Use it in the charging argument for M1.

3 Free edge part of Gi will make it to Mi and H.
I Free edges in M2 ∪M3 ∪ . . . compensate the free edges in M1.
I Subtle argument for �augmentation.�

In practice

I Focus on 2-round algorithms: [AssBatBer+19] too complicated

I [AssKha17] without [CroStu14] not viable for weighted matching

In practice

I Focus on 2-round algorithms: [AssBatBer+19] too complicated

I [AssKha17] without [CroStu14] not viable for weighted matching

I [AssKha17] with [CroStu14] not as good as the new algorithm

Dataset Speed-up

|V | |E | ∆ [AssKha17] This work

Friendster 66M 550B 2.1M 4.7x 130x

Orkut 3M 21B 900K 1.4x 17x

LiveJournal 4.8M 3.9B 444K 2.5x 6x

DBLP 1.5M 5.9M 1961 1.2x 3x

In practice

I Focus on 2-round algorithms: [AssBatBer+19] too complicated

I [AssKha17] without [CroStu14] not viable for weighted matching

I [AssKha17] with [CroStu14] not as good as the new algorithm

Dataset Quality

|V | |E | ∆ [AssKha17] This work

Friendster 66M 550B 2.1M 94.4% 99.8%

Orkut 3M 21B 900K 92.4% 98.9%

LiveJournal 4.8M 3.9B 444K 96.5% 99.9%

DBLP 1.5M 5.9M 1961 92.4% 99.6%

In practice

I Focus on 2-round algorithms: [AssBatBer+19] too complicated

I [AssKha17] without [CroStu14] not viable for weighted matching

I [AssKha17] with [CroStu14] not as good as the new algorithm

I Multiplicity 2 or 3 is su�cient

Summary

I A simple, scalable algorithm for maximum-weight matching with 2+ ε
approximation.
I Uses greedy algorithm for coreset construction.
I Uses multiplicity.

I Good performance in practice.
I Small multiplicity su�ces.
I Beats prior algorithms.
I Huge speed-up of sequential algorithm, but faithful simulation.

Thanks!

Poster #161
Paci�c Ballroom

Summary

I A simple, scalable algorithm for maximum-weight matching with 2+ ε
approximation.
I Uses greedy algorithm for coreset construction.
I Uses multiplicity.

I Good performance in practice.
I Small multiplicity su�ces.
I Beats prior algorithms.
I Huge speed-up of sequential algorithm, but faithful simulation.

Thanks!

Poster #161
Paci�c Ballroom

Biblios I

Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal
algorithms for maximum matching under resource constraints. In SPAA, pages 202�211, 2015.

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cli� Stein.
Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In SODA,
pages 1616�1635, 2019.

Sepehr Assadi and Sanjeev Khanna. Randomized composable coresets for matching and vertex
cover. In SPAA, pages 3�12, 2017.

Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In SODA, pages 1345�1364,
2016.

Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching, via
unweighted matching. In APPROX, pages 96�104, 2014.

Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak, and Piotr
Sankowski. Round compression for parallel matching algorithms. In STOC, pages 471�484, 2018.

Biblios II

Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM,
61(1):1:1�1:23, 2014.

Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of

the National Bureau of Standards B, 69(125-130):55�56, 1965.

Jack Edmonds. Paths, trees, and �owers. Canadian Journal of Mathematics, 17(3):449�467, 1965.

Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-matching
problems. J. ACM, 38(4):815�853, 1991.

Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via
unweighted augmentations. CoRR, abs/1811.02760. To appear in PODC 2019., 2018.

Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms in the
mapreduce model. In SPAA, pages 43�52, 2018.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms
in mapreduce and streaming. In SPAA, pages 1�10, 2013.

Biblios III

Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method for
solving graph problems in mapreduce. In SPAA, pages 85�94, 2011.

Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for
distributed submodular maximization. In STOC, pages 153�162, 2015.

