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Massive graphs

Everywhere: web graph, social networks, biological networks, etc.

Matching: a collection of vertex-disjoint edges
» Clustering, partitioning
» Finding motifs in bioinformatics
» Trade marketing, online advertisement
» Kidney exchange
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Linear algebra, matrix decomposition



Variants:
» Weighted vs unweighted
> Bipartite vs non-bipartite

Algorithmic results:
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> 1+ ¢ approx in O(m/e) time
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Large scale

Sequential algorithms do not work
» O(m) runtime is prohibitive
» O(n) memory not available on a single machine
» Simply reading input data once may take too long!

MapReduce: de facto industry standard
» Split data across many machines o e
» Split computation into several rounds %
» Data is sent to machines based on keys
» Machines produce output for next round

Important: = _g
@ number of rounds i m
® number of machines
® memory on each machine
O amount of computation on each machine



Large scale

Simulation

“Greedy algorithms are practitioners’ best friends—they are intuitive, simple to implement,
and often lead to very good solutions. However, implementing greedy algorithms in a
distributed setting is challenging since the greedy choice is inherently sequential, and it
is not clear how to take advantage of the extra processing power.”

Two typical types of results:
@ Relatively large number of rounds to “faithfully” simulate the greedy algorithm.

® Very small number of rounds (one or two) for “weak” simulation, O(1) worse than
the greedy algorithm.
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Composable coresets

Basic idea

N
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Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a partitioning of G; send each edge e € G to a subgraph G;
arbitrarily.
» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.
» ALG outputs an a-approx composable coreset of size s for a problem P iff

P(ALG(G1)U...UALG(Gk)) is an a-approx to P(G).



Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a partitioning of G; send each edge e € G to a subgraph G;
arbitrarily.
» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.
» ALG outputs an a-approx composable coreset of size s for a problem P iff

P(ALG(G1)U...UALG(Gk)) is an a-approx to P(G).

» Design ALG for small o (quality) and s (size).



Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a partitioning of G; send each edge e € G to a subgraph G;
arbitrarily.
» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.

» ALG outputs an a-approx composable coreset of size s for a problem P iff
P(ALG(G1)U...UALG(Gk)) is an a-approx to P(G).

» Design ALG for small (y (quality) and s (size).
> n°(1) approx requires n°~°(!) space



Composable coresets

Mathematic formulation

Definition
» Let Gi,..., G, be a random partitioning of G; send each edge e € G to a
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» Randomized coresets were introduced by for submodular maximization.
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Composable coresets

Mathematic formulation

Definition

» Let Gi,..., G, be a random p-partitioning of G; send each edge e € G to
subgraphs G; uniformly at random.

» Consider an algorithm ALG that given G; outputs a subgraph H; of G; with s
edges.

» ALG outputs an a-approx randomized composable coreset of size s and
multiplicity ;. for a problem P iff
P(ALG(Gy)U...UALG(Gg)) is an a-approx to P(G).

» Maximum-matching coresets do not give ov < 2, but sparsification (EDCS) +
randomized coresets give o« = 1.5 + ¢ approx +

We present a simple (2 + ¢)-approximation randomized coreset with
mulitplicity ;o = O(% log %) for maximum-weight matching.
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Algorithm

® Send each edge to /1 = O(%) machines.

® Sort edges according to weight on each machine (with consistent tie-breaking),
and greedily find a maximal matching (the coresets).

® Find a maximum matching M of the union of coresets H.

» This gives a 2 + ¢ approx.
» Simple, scalable implementation except for Step 3.

» Replacing Step 3 with a greedy maximal matching algorithm is provably a 3 + ¢
approx (not a 4 + ¢ approx).

> Better analysis uses “consistency” of maximal (vs. maximum) matching coresets.
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Proof idea

» Machine / works on subgraph G; and contributes maximal matching M; to coreset
H=uU;M;.
» Compare to a reference maximum-weight matching M*.

> Let permutation 7 of edges be the consistent sorting order.
> Edge e € M* is free on machine i iff its endpoints are available when e “arrives.”

» Otherwise e € M* is blocked on machine /.
» Maybe e is missing on machine /.

@ Subgraphs G; have the same distribution; focus on G; and M.
® A blocked edge has a heavier edge in M; as its “certificate.”

» Use it in the charging argument for M.
© Free edge part of G; will make it to M; and H.

» Free edges in M, U M5 U ... compensate the free edges in M.
» Subtle argument for “augmentation.”
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» Focus on 2-round algorithms: 19] too complicated
> without not viable for weighted matching
> with not as good as the new algorithm
Dataset Speed-up
V| |E| A This work
Friendster 66M 550B 2.1M 4.7x 130x
Orkut 3M  21B 900K 1.4x 17x
LiveJournal 4.8M 3.9B 444K 2.5x 6x
DBLP 1.5M 59M 1961 1.2x 3x




» Focus on 2-round algorithms:

>
>

+

too complicated

without not viable for weighted matching
with not as good as the new algorithm
Dataset Quality
V| |E| A This work
Friendster 66M 550B 2.1M 94.4% 99.8%
Orkut 3M  21B 900K 92.4% 98.9%
LiveJournal 4.8M 3.9B 444K 96.5% 99.9%
DBLP 1.5M 59M 1961 92.4% 99.6%

In practice



» Focus on 2-round algorithms: 19] too complicated
> without not viable for weighted matching
> with not as good as the new algorithm

» Multiplicity 2 or 3 is sufficient

100.00% = Cardinality (k=10)
== Weight (k=10)

Cardinality (k=20)
w— Weight (k=20)

98 00%

96.00%

94.00%

2 3

Multiplicity

In practice



Summary

» A simple, scalable algorithm for maximum-weight matching with 2 + ¢
approximation.
» Uses greedy algorithm for coreset construction.
» Uses multiplicity.

» Good performance in practice.
» Small multiplicity suffices.
> Beats prior algorithms.
» Huge speed-up of sequential algorithm, but faithful simulation.



Summary

> A simple, scalable algorithm for maximum-weight matching with 2 + ¢
approximation.

» Uses greedy algorithm for coreset construction.
» Uses multiplicity.

» Good performance in practice.

» Small multiplicity suffices.
> Beats prior algorithms.
» Huge speed-up of sequential algorithm, but faithful simulation.
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