On the Statistical Rate of Nonlinear Recovery in Generative Models with Heavy-tailed Data

Xiaohan Wei, Zhuoran Yang, and Zhaoran Wang

University of Southern California, Princeton University and Northwestern University

June 12th, 2019

Generative Model vs Sparsity in Signal Recovery

• Classical sparsity: structure of the signals depend on basis.

Generative Model vs Sparsity in Signal Recovery

- Classical sparsity: structure of the signals depend on basis.
- Generative model: explicit parametrization of low-dimensional signal manifold.

Generative Model vs Sparsity in Signal Recovery

- Classical sparsity: structure of the signals depend on basis.
- Generative model: explicit parametrization of low-dimensional signal manifold.
- Previous works: [Bora et al. 2017] [Hand et al. 2018] [Mardani et al. 2017].

• Given: Generative model $\mathbf{G}: \mathbb{R}^k \to \mathbb{R}^d$ and measurement matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$.

- Given: Generative model $\mathbf{G}: \mathbb{R}^k \to \mathbb{R}^d$ and measurement matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$.
- Goal: Recovery $G(\theta^*)$ up to scaling from nonlinear observations $y = f(XG(\theta^*))$.

- Given: Generative model $\mathbf{G}: \mathbb{R}^k \to \mathbb{R}^d$ and measurement matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$.
- Goal: Recovery $G(\theta^*)$ up to scaling from nonlinear observations $y = f(XG(\theta^*))$.
- Challenges:
 - High-dimensional recovery: $k \ll d$, $m \ll d$.

- Given: Generative model $\mathbf{G}: \mathbb{R}^k \to \mathbb{R}^d$ and measurement matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$.
- Goal: Recovery $G(\theta^*)$ up to scaling from nonlinear observations $y = f(XG(\theta^*))$.
- Challenges:
 - **1** High-dimensional recovery: $k \ll d$, $m \ll d$.
 - 2 Non-Gaussian **X** and *unknown* non-linearity *f*.

- Given: Generative model $\mathbf{G}: \mathbb{R}^k \to \mathbb{R}^d$ and measurement matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$.
- Goal: Recovery $G(\theta^*)$ up to scaling from nonlinear observations $y = f(XG(\theta^*))$.
- Challenges:
 - **1** High-dimensional recovery: $k \ll d$, $m \ll d$.
 - Non-Gaussian X and unknown non-linearity f.
 - 3 Observations y can be heavy-tailed.

- Suppose the rows of $\mathbf{X} := [\mathbf{X}_1, \cdots, \mathbf{X}_m]^T \in \mathbb{R}^{m \times d}$ have density $p : \mathbb{R}^d \to \mathbb{R}$.
- Define the (row-wise) score transformation:

$$\mathcal{S}_{p}(\mathbf{X}) := \left[\mathcal{S}_{p}(\mathbf{X}_{1}), \cdots, \mathcal{S}_{p}(\mathbf{X}_{m})\right]^{T} = \left[\nabla \log p(\mathbf{X}_{1}), \cdots, \nabla \log p(\mathbf{X}_{m})\right]^{T}.$$

- Suppose the rows of $\mathbf{X} := [\mathbf{X}_1, \cdots, \mathbf{X}_m]^T \in \mathbb{R}^{m \times d}$ have density $p : \mathbb{R}^d \to \mathbb{R}$.
- Define the (row-wise) score transformation:

$$\mathcal{S}_{p}(\mathbf{X}) := \left[\mathcal{S}_{p}(\mathbf{X}_{1}), \cdots, \mathcal{S}_{p}(\mathbf{X}_{m})\right]^{T} = \left[\nabla \log p(\mathbf{X}_{1}), \cdots, \nabla \log p(\mathbf{X}_{m})\right]^{T}.$$

• (First-order) Stein's identity: when $\mathbb{E}f'(\langle \mathbf{X}_i, \mathbf{G}(\theta^*) \rangle) > 0$,

$$\mathbb{E}\left[\mathcal{S}_{p}(\mathbf{X})^{T}\mathbf{y}
ight] \propto \mathbf{G}(heta^{*}).$$

• (Second-order) Stein's identity: when $\mathbb{E}f''(\langle \mathbf{X}_i, \mathbf{G}(\theta^*) \rangle) > 0$, δ is a constant,

$$\mathbb{E}\left[\mathcal{S}_{p}(\mathbf{X})^{T}\mathsf{diag}(\mathbf{y})\mathcal{S}_{p}(\mathbf{X})\right] \propto \mathbf{G}(\theta^{*})\mathbf{G}(\theta^{*})^{T} + \delta \cdot \mathbf{I}_{d \times d}.$$

- Suppose the rows of $\mathbf{X} := [\mathbf{X}_1, \cdots, \mathbf{X}_m]^T \in \mathbb{R}^{m \times d}$ have density $p : \mathbb{R}^d \to \mathbb{R}$.
- Define the (row-wise) score transformation:

$$S_p(\mathbf{X}) := [S_p(\mathbf{X}_1), \cdots, S_p(\mathbf{X}_m)]^T = [\nabla \log p(\mathbf{X}_1), \cdots, \nabla \log p(\mathbf{X}_m)]^T.$$

• (First-order) Stein's identity: when $\mathbb{E}f'(\langle \mathbf{X}_i, \mathbf{G}(\theta^*) \rangle) > 0$,

$$\mathbb{E}\left[\mathcal{S}_{p}(\mathbf{X})^{T}\mathbf{y}
ight] \propto \mathbf{G}(heta^{*}).$$

• (Second-order) Stein's identity: when $\mathbb{E}f''(\langle \mathbf{X}_i, \mathbf{G}(\theta^*) \rangle) > 0$, δ is a constant,

$$\mathbb{E}\left[\mathcal{S}_p(\mathbf{X})^T\mathsf{diag}(\mathbf{y})\mathcal{S}_p(\mathbf{X})\right] \propto \mathbf{G}(\theta^*)\mathbf{G}(\theta^*)^T + \delta \cdot \mathbf{I}_{d \times d}.$$

• Adaptive thresholding: suppose $||y_i||_{L_q} < \infty$, q > 4, and $\tau_m \propto m^{2/q}$,

$$\widetilde{\mathbf{y}}_i = \operatorname{sign}(\mathbf{y}_i) \cdot (|\mathbf{y}_i| \wedge \tau_m), \ i \in \{1, 2, \cdots, m\}$$

Least-squares estimator:

$$\widehat{\theta} \in \operatorname{argmin}_{\theta \in \mathbb{R}^k} \ \left\| \mathbf{G}(\theta) - \frac{1}{m} \mathcal{S}_{\rho}(\mathbf{X})^T \widetilde{\mathbf{y}} \right\|_2^2.$$

Least-squares estimator:

$$\widehat{\theta} \in \operatorname{argmin}_{\theta \in \mathbb{R}^k} \ \left\| \mathbf{G}(\theta) - \frac{1}{m} \mathcal{S}_p(\mathbf{X})^T \widetilde{\mathbf{y}} \right\|_2^2.$$

• Main performance theorem:

Theorem (Wei, Yang and Wang, 2019)

For any accuracy level $\varepsilon \in (0,1]$, suppose

- (1) $\mathbb{E} f'(\langle \mathbf{X}_i, \mathbf{G}(\theta^*) \rangle) > 0$,
- (2) the generative model G is a ReLU network with zero bias,
- (3) the number of measurements

$$m \propto k\varepsilon^{-2} \log d$$
.

Then, with high probability,

$$\left\|\frac{\mathbf{G}(\widehat{\boldsymbol{\theta}})}{\|\mathbf{G}(\widehat{\boldsymbol{\theta}})\|_2} - \frac{\mathbf{G}(\boldsymbol{\theta}^*)}{\|\mathbf{G}(\boldsymbol{\theta}^*)\|_2}\right\|_2 \leq \varepsilon.$$

Similar results hold for more general Lipschitz generators G.

PCA type estimator:

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmax}_{\|\mathbf{G}(\boldsymbol{\theta})\|_2 = 1} \ \mathbf{G}(\boldsymbol{\theta})^T \mathcal{S}_{\boldsymbol{\mathcal{P}}}(\mathbf{X})^T \mathrm{diag}(\widetilde{\mathbf{y}}) \mathcal{S}_{\boldsymbol{\mathcal{P}}}(\mathbf{X}) \mathbf{G}(\boldsymbol{\theta})$$

PCA type estimator:

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmax}_{\|\mathbf{G}(\boldsymbol{\theta})\|_2 = 1} \ \mathbf{G}(\boldsymbol{\theta})^T \mathcal{S}_{\boldsymbol{\mathcal{P}}}(\mathbf{X})^T \operatorname{diag}(\widetilde{\mathbf{y}}) \mathcal{S}_{\boldsymbol{\mathcal{P}}}(\mathbf{X}) \mathbf{G}(\boldsymbol{\theta})$$

• Main performance theorem:

Theorem (Wei, Yang and Wang, 2019)

For any accuracy level $\varepsilon \in (0,1]$, suppose

- (1) $\mathbb{E} f''(\langle \mathbf{X}_i, \mathbf{G}(\theta^*) \rangle) > 0$,
- (2) the generative model G is a ReLU network with zero bias,
- (3) the number of measurements

$$m \propto k \varepsilon^{-2} \log d$$
.

Then, with high probability,

$$\left\| \mathbf{G}(\widehat{\theta}) - \frac{\mathbf{G}(\theta^*)}{\|\mathbf{G}(\theta^*)\|_2} \right\|_2 \leq \varepsilon.$$

Similar results hold for more general Lipschitz generators G.

Thank you!

Poster 198, Pacific Ballroom, 6:30-9:00 pm