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Generative Model vs Sparsity in Signal Recovery

@ Classical sparsity: structure of the signals depend on basis.
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Generative Model vs Sparsity in Signal Recovery

@ Classical sparsity: structure of the signals depend on basis.
@ Generative model: explicit parametrization of low-dimensional signal manifold.
@ Previous works: [Bora et al. 2017] [Hand et al. 2018] [Mardani et al. 2017].
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Nonlinear Recovery via Generative Models

Latent space 6*

Measurement XG(S*) Unknown f(XG(e*))

Matrix transformation

Generative *
Model G(e )

@ Given: Generative model G : R¥ — R? and measurement matrix X € R™*9,
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Nonlinear Recovery via Generative Models

Latent space 6*

Measurement XG(S*) Unknown f(XG(e*))

Matrix transformation

Generative *
Model G(e )

@ Given: Generative model G : R¥ — R? and measurement matrix X € R™*9,
@ Goal: Recovery G(6*) up to scaling from nonlinear observations y = f(XG(6*)).
@ Challenges:

@ High-dimensional recovery: k < d, m < d.

@ Non-Gaussian X and unknown non-linearity f.

© Observations y can be heavy-tailed.



Our Method: Stein + Adaptive Thresholding

@ Suppose the rows of X := [Xy,--- ,Xm]T € R™*9 have density p: R? — R.
@ Define the (row-wise) score transformation:

Sp(X) = [Sp(X4), -+, Sp(Xm)]" = [VIog p(X+), -~ , Vlog p(Xm)] "
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@ Suppose the rows of X := [Xy,--- ,Xm]T € R™*9 have density p: R? — R.
@ Define the (row-wise) score transformation:

Sp(X) := [Sp(X4), -+, Sp(Xm)]” = [VIog p(X1), - -+ , VIog p(Xm)] -
o (First-order) Stein’s identity: when Ef'((X;, G(6*))) > 0,

E [sp(X)Ty] x G(6*).

@ (Second-order) Stein’s identity: when Ef” ((X;, G(6*))) > 0, § is a constant,

£ [Sp(X) T diag(y)Sp(X)] o< G(O)G(6")T + 6 -l

@ Adaptive thresholding: suppose ||yill, < oo, g >4, and T, o m?/a,

Yi = sign(y;) - (Iyil Atm), i€{1,2,---,m}



Our Method: Stein + Adaptive Thresholding

@ Least-squares estimator:
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@ Least-squares estimator:
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@ Main performance theorem:

Theorem (Wei, Yang and Wang, 2019)

For any accuracy level € € (0, 1], suppose

(1) Ef'((X;, G(6*))) > 0,

(2) the generative model G is a ReLU network with zero bias,
(8) the number of measurements

m x ke 2 log d.
Then, with high probability,

GO  G(¥)
1GO)]l2  1G(6%)ll2
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@ Similar results hold for more general Lipschitz generators G.
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0 € argmax (g |,—1 G(0)” Sp(X)" diag(y)Sp(X)G(0)

@ Main performance theorem:

Theorem (Wei, Yang and Wang, 2019)

For any accuracy level € € (0, 1], suppose
(1) Ef"((X;, G(6))) > O,
(2) the generative model G is a ReLU network with zero bias,
(3) the number of measurements
m x ke 2 log d.
Then, with high probability,
~ G(6*)
G(6) —
H 1G(6*)ll2
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@ Similar results hold for more general Lipschitz generators G.
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