The advantages of multiple classes for
reducing overfitting from test set reuse
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Test data is reused. Are results still valid?
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How much bias is caused by reuse?
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Meanwhile: not much overfitting on CIFAR/ImageNet/MNIST
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Main result: class multiplicity mitigates bias

Theorem: for k < n/m, with n examples, m classes, k accuracy queries
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Main result: class multiplicity mitigates bias

Theorem: for k < n/m, with n examples, m classes, k accuracy queries
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Lower bound by an overfitting attack that is:

e Computationally efficient
e Optimal among point-wise attacks
e Can incorporate priors
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Attacking the ImageNet test set

Scale: 50K points over 1K labels

Prior: ResNet-50v2

Overfitting is possible, e.g. 3% bias with ~5K queries
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Also...

e The many-query regime, k >n/m

o Arecovery-based attack
o A matching upper bound

e More experiments!
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