Lossless or duantized Boosting
with Integer Arithmetic
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The big picture

* Many constraints in today-ML (e.g. for privacy, at-the-edge, distributed or deep)

— generic: integer encoding, small set of operations, quantisation (+ accuracy)

» The shortest path to solutions: hammering existing SOTA for new constraints

— does not go without uncertainty or loss in SOTA guarantees

/4 /7 (may need a
%, big hammer)

* Alternative: “replace current ML algorithms with [constraint-friendly] ones”
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— some great stories in supervised ML start

from the same ground, a “nice” loss function...
(SVM, Boosting, etc.)




...50 we created a new loss that fits to the
constraints



Statistical properties of a good loss

» Loss for class probability estimation: ¢ :Y x (0,1) — R, whereY = {—1,1}
- Can be defined from partial losses ((y,u) = [y = 1] - {1 (u) + [y = —1] - £-1(u)
+ Ex: square loss has £ (u) = (1/2) - (1 —u)? & €2, (u) = (1/2) - u?

* (pointwise) Bayes risk: L(7) = inf. Eyv.£(Y,c), proper if 7in inf

+ Ex: square loss has L**(w) = (1/2) - w(1 — ) (Gini entropy), proper
(concave)

- Real valued classification via a link ) : [0,1] — R giving £,(y, 2) = £(y, v ' (2))
* Proper loss canonical if link implicit, given by ) = —L'
* Ex: square loss has £3(y,z) = (1/4) - (1 — 2yz)*, proper canonical
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Desiderata for our loss, summarised
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1- Statistics: strictly proper canonical,
2- Statistics: link with image spanning the full[R, s} f

- 3- Optimisation: F'strictly convex 2x differentiable, , |
* 4- Learning: mirror update & entails +, -, /, *, |.]| »
| mp=
ZOU w_l( 2 w(u)) 4 .......... o e e s
« Ex: 1 rules out exp loss, 2 rules out square”"'l'a s, 4 rules out log loss, etc., so

no popular loss fits...
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The Q-loss

- partial losses: The Q-loss is defined from the following partial losses,

0y (u) =

09(u) = €2, (1 - u)

(10g (“) +ly=1]- (—2 + %))

£€(0,1/2),0>0
u<1/2

u>1/2

err(u) = u

Pointwise Bayes risk: AL =)

LOu) = o (log (e”g(“)> +1-2 err(u ))

Surrogate:

F9(2)

H(z) =0V —z

—o-loge —p-log (Z—I—‘—j) + H(2)

Mirror update: (can be simplified)

o-err(u) + H (z-err(u) + o - (1 — 2u))
20-err(u) + |z -err(u) + 0 (1 — 2u)|
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Theorem:

The Q-loss fits all four constraints
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Learning with the Q-loss

- Boosting 1:¢ yields a boosting-compliant algorithm for F@(weak/strong learning)
* If inputs are rational numbers, the exact solution can be computed using
integer arithmetic (lossless solution)

- Sufficient condition on weight auantization to keep boosting convergence

- Boosting 2: pointwise Bayes risk L?yields optimal boosting rate for decision trees

* Experiments:

Efficient adaptive weight
quantization scheme |




ThankK 9ou !

(more on achieving lossless boosting by choosing a loss ? poster # 194)
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