Lossless or Quantized Boosting with Integer Arithmetic

Richard Nock

Robert C. Williamson

The big picture

- Many constraints in today-ML (e.g. for privacy, at-the-edge, distributed or deep)
 - generic: integer encoding, small set of operations, quantisation (+ accuracy)
- The shortest path to solutions: **hammering** existing SOTA for new constraints
 - does not go without uncertainty or loss in SOTA guarantees

- Alternative: "replace current ML algorithms with [constraint-friendly] ones"
 - some great stories in supervised ML start from the same ground, a "nice" loss function...

(SVM, Boosting, etc.)

...so we created a new loss that fits to the constraints

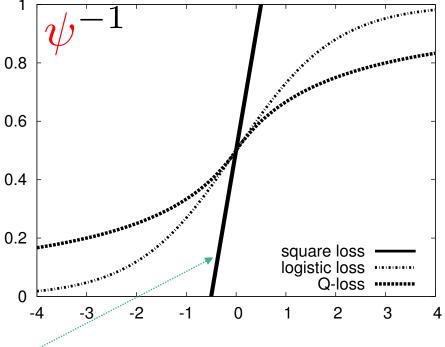
Statistical properties of a good loss

- Loss for *class probability estimation*: $\ell: \mathcal{Y} \times (0,1) \to \mathbb{R}$, where $\mathcal{Y} \doteq \{-1,1\}$
- Can be defined from partial losses $\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \underline{\ell_1}(u) + \llbracket y=-1 \rrbracket \cdot \underline{\ell_{-1}}(u)$
- Ex: square loss has $\ell_1^{\text{sq}}(u) \doteq (1/2) \cdot (1-u)^2$ & $\ell_{-1}^{\text{sq}}(u) \doteq (1/2) \cdot u^2$
- (pointwise) Bayes risk: $\underline{L}(\pi) \doteq \inf_c E_{Y \sim \pi} \ell(Y, c)$, proper if π in inf
- Ex: square loss has $\underline{L}^{\text{sq}}(\pi) = (1/2) \cdot \pi(1-\pi)$ (Gini entropy), proper (concave)
- Real valued classification via a link $\psi:[0,1]\to\mathbb{R}$ giving $\ell_{\psi}(y,z)\doteq\ell(y,\psi^{-1}(z))$
- Proper loss canonical if link *implicit*, given by $\psi \doteq -\underline{L}'$
- Ex: square loss has $\ell_{\pmb{\psi}}^{\text{\tiny SQ}}(y,z)=\underline{(1/4)\cdot(1-2yz)^2}$, proper canonical "surrogate" F(yz) (convex)

Desiderata for our loss, summarised

- 1- Statistics: strictly proper canonical,
- 2- Statistics: link with image spanning the full \mathbb{R} ,
- 3- Optimisation: F strictly convex 2x differentiable,
- 4- Learning: mirror update ♦ entails +, -, /, *, |.|

$$z \diamond u \leftarrow \psi^{-1}(-z + \psi(u))$$



• Ex: 1 rules out exp loss, 2 rules out square loss, 4 rules out log loss, etc., so no popular loss fits...

The Q-loss

partial losses: The Q-loss is defined from the following partial losses,

$$\ell_y^Q(u) \doteq \varrho \cdot \left(\log\left(\frac{u}{\varepsilon}\right) + [y=1] \cdot \left(-2 + \frac{1}{u}\right)\right) \qquad u \le 1/2$$

(can be simplified)

$$\ell_u^Q(u) \doteq \ell_{-u}^Q(1-u)$$

$$a \le 1/2$$

 $\varepsilon \in (0, 1/2), \rho > 0$

 $H(z) \doteq 0 \vee -z$

Pointwise Bayes risk:

$$\underline{L}^Q(u) = \varrho \cdot \left(\log\left(\frac{\mathrm{err}(u)}{\varepsilon}\right) + 1 - 2 \cdot \mathrm{err}(u)\right) \qquad F^Q(z) = -\varrho \cdot \log\varepsilon - \varrho \cdot \log\left(2 + \frac{|z|}{\varrho}\right) + \mathrm{H}(z)$$

Surrogate:

$$F^Q(z) = -\varrho \cdot \log \varepsilon - \varrho \cdot \log \left(2 + \frac{|z|}{\varrho}\right) + \mathbf{H}(z)$$

Mirror update:

$$z \diamond u = \frac{\varrho \cdot \operatorname{err}(u) + H\left(z \cdot \operatorname{err}(u) + \varrho \cdot (1 - 2u)\right)}{2\varrho \cdot \operatorname{err}(u) + |z \cdot \operatorname{err}(u) + \varrho \cdot (1 - 2u)|}$$

Theorem:

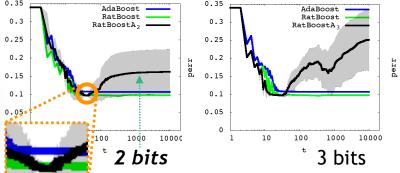
The Q-loss fits all four constraints

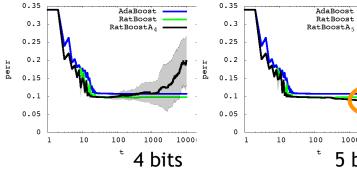
Learning with the Q-loss

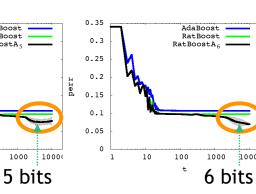
- Boosting 1: \diamondsuit yields a **boosting-compliant** algorithm for F^Q (weak/strong learning)
 - If inputs are rational numbers, the *exact solution* can be computed using integer arithmetic (lossless solution)
 - Sufficient condition on weight quantization to keep boosting convergence
- Boosting 2: pointwise Bayes risk \underline{L}^Q yields **optimal** boosting rate for decision trees

• Experiments:

Efficient adaptive weight quantization scheme







Thank you!

(more on achieving lossless boosting by choosing a loss? poster # 194)