Problem Definition Analysis and Techniques Results Main Results Poster Details

Near optimal finite time identification of arbitrary linear dynamical systems

Tuhin Sarkar & Alexander Rakhlin

Massachusetts Institute of Technology

June 12, 2019

Plan

- Problem Definition
- 2 Analysis and Techniques
- Results
- 4 Main Results
- 6 Poster Details

Linear Time Invariant (LTI) Systems

LTI systems appear in autoregressive processes, control and RL systems. Formally,

$$X_{t+1} = AX_t + \eta_{t+1} (1)$$

- $X_t, \eta_t \in \mathbb{R}^n$. X_t is state vector, η_t is noise vector.
- A is state transition matrix : characterizes the LTI system.
- Assume $\{\eta_t\}_{t=1}^{\infty}$ is isotropic and subGaussian.

Linear Time Invariant (LTI) Systems

LTI systems appear in autoregressive processes, control and RL systems. Formally,

$$X_{t+1} = AX_t + \eta_{t+1} (1)$$

- $X_t, \eta_t \in \mathbb{R}^n$. X_t is state vector, η_t is noise vector.
- A is state transition matrix : characterizes the LTI system.
- Assume $\{\eta_t\}_{t=1}^{\infty}$ is isotropic and subGaussian.

Linear Time Invariant (LTI) Systems

LTI systems appear in autoregressive processes, control and RL systems. Formally,

$$X_{t+1} = AX_t + \eta_{t+1} (1)$$

- $X_t, \eta_t \in \mathbb{R}^n$. X_t is state vector, η_t is noise vector.
- A is state transition matrix : characterizes the LTI system.
- Assume $\{\eta_t\}_{t=1}^{\infty}$ is isotropic and subGaussian.

Learning A from data

Goal: Learn A from $\{X_t\}_{t=1}^T$

$$\hat{A} = \inf_{A_o} \sum_{t=1}^{T} ||X_{t+1} - A_o X_t||_2^2$$

Estimation error

$$E = A - \hat{A} = (\sum_{t=1}^{T} \eta_{t+1} X_t^{\top}) (\sum_{t=1}^{T} X_t X_t^{\top})^{+}$$
 (2)

Error analysis hard : $\{X_t\}_{t=1}^T$ are not independent.

Related Work

- Faradonbeh et. al. (2017). Finite time identification in unstable linear systems.
- Simchowitz et. al. (2018). Learning without mixing: Towards a sharp analysis of linear system identification.

Past works fail to capture correct behavior for all A.

Main Technique

The analysis proceeds in two steps:

- Show invertibility of sample covariance matrix : $\sum_{t=1}^{T} X_t X_t^{\top} \approx f(T)I.$
- Show the following for self–normalized martingale term :

$$(\sum_{t=1}^{T} \eta_{t+1} X_t^{\top}) (\sum_{t=1}^{T} X_t X_t^{\top})^{-1/2} = O(1)$$

Main Technique

The analysis proceeds in two steps:

- Show invertibility of sample covariance matrix : $\sum_{t=1}^{T} X_t X_t^{\top} \approx f(T)I.$
- Show the following for self–normalized martingale term :

$$(\sum_{t=1}^{T} \eta_{t+1} X_t^{\top}) (\sum_{t=1}^{T} X_t X_t^{\top})^{-1/2} = O(1)$$

Sample Covariance Matrix

Let $\rho_i(A)$ be the absolute value of i^{th} eigenvalue of A with $\rho_i(A) \geq \rho_{i+1}(A)$. Then

- $\rho_i \in S_0 \implies \rho_i(A) \le 1 C/T$
- $\rho_i \in S_1 \implies \rho_i(A) \in [1 C/T, 1 + C/T]$
- $\rho_i \in S_2 \implies \rho_i(A) \ge 1 + C/T$

- $\rho_i(A) \in S_0 \implies \sum_{t=1}^T X_t X_t^\top = \Theta(T)$
- $\rho_i(A) \in S_1 \implies \sum_{t=1}^T X_t X_t^{\top} = \Omega(T^2)$
- $\rho_i(A) \in S_2 \implies \sum_{t=1}^T X_t X_t^\top = \Omega(e^{aT})$ (under necessary and sufficient "regularity" conditions only)

Sample Covariance Matrix

Let $\rho_i(A)$ be the absolute value of i^{th} eigenvalue of A with $\rho_i(A) \geq \rho_{i+1}(A)$. Then

- $\rho_i \in S_0 \implies \rho_i(A) \le 1 C/T$
- $\rho_i \in S_1 \implies \rho_i(A) \in [1 C/T, 1 + C/T]$
- $\rho_i \in S_2 \implies \rho_i(A) \ge 1 + C/T$

- $\rho_i(A) \in S_0 \implies \sum_{t=1}^T X_t X_t^\top = \Theta(T)$
- $\rho_i(A) \in S_1 \implies \sum_{t=1}^T X_t X_t^{\top} = \Omega(T^2)$
- $\rho_i(A) \in S_2 \implies \sum_{t=1}^T X_t X_t^\top = \Omega(e^{aT})$ (under necessary and sufficient "regularity" conditions only)

Sample Covariance Matrix

Let $\rho_i(A)$ be the absolute value of i^{th} eigenvalue of A with $\rho_i(A) \geq \rho_{i+1}(A)$. Then

- $\rho_i \in S_0 \implies \rho_i(A) \le 1 C/T$
- $\rho_i \in S_1 \implies \rho_i(A) \in [1 C/T, 1 + C/T]$
- $\rho_i \in S_2 \implies \rho_i(A) \ge 1 + C/T$

- $\rho_i(A) \in S_0 \implies \sum_{t=1}^T X_t X_t^\top = \Theta(T)$
- $\rho_i(A) \in S_1 \implies \sum_{t=1}^T X_t X_t^{\top} = \Omega(T^2)$
- $\rho_i(A) \in S_2 \Longrightarrow \sum_{t=1}^T X_t X_t^\top = \Omega(e^{aT})$ (under necessary and sufficient "regularity" conditions only)

Self Normalized Martingale

Theorem (Abbasi-Yadkori et. al. 2011)

Let V be a deterministic matrix with $V \succ 0$. For any $0 < \delta < 1$ and $\{\eta_t, X_t\}_{t=1}^T$ defined as before, we have with probability $1 - \delta$

$$||(\bar{Y}_{T-1})^{-1/2} \sum_{t=0}^{T-1} X_t \eta'_{t+1}||_2$$

$$\leq R \sqrt{8n \log \left(\frac{5 \det(\bar{Y}_{T-1})^{1/2n} \det(V)^{-1/2n}}{\delta^{1/n}} \right)}$$
(3)

where $\bar{Y}_{\tau}^{-1} = (Y_{\tau} + V)^{-1}$ and R^2 is the subGaussian parameter of η_t .

Combining the previous results (and a few more matrix manipulations) we show

- $\rho_i(A) \in S_0 \cup S_1 \cup S_2 \implies ||E||_2 = O(T^{-1/2})$
- $\rho_i(A) \in S_1 \cup S_2 \implies ||E||_2 = O(T^{-1})$
- $\rho_i(A) \in S_2 \implies ||E||_2 = O(e^{-aT})$ (under necessary and sufficient "regularity" conditions only)

Combining the previous results (and a few more matrix manipulations) we show

- $\rho_i(A) \in S_0 \cup S_1 \cup S_2 \implies ||E||_2 = O(T^{-1/2})$
- $\rho_i(A) \in S_1 \cup S_2 \implies ||E||_2 = O(T^{-1})$
- $\rho_i(A) \in S_2 \implies ||E||_2 = O(e^{-aT})$ (under necessary and sufficient "regularity" conditions only)

Combining the previous results (and a few more matrix manipulations) we show

- $\rho_i(A) \in S_0 \cup S_1 \cup S_2 \implies ||E||_2 = O(T^{-1/2})$
- $\rho_i(A) \in S_1 \cup S_2 \implies ||E||_2 = O(T^{-1})$
- $\rho_i(A) \in S_2 \implies ||E||_2 = O(e^{-aT})$ (under necessary and sufficient "regularity" conditions only)

Regularity condition : All eigenvalues greater than one should have geometric multiplicity one.

Theorem

If the regularity conditions are violated then OLS is inconsistent.

OLS cannot learn $A = \rho I$ where $\rho \ge 1.5$. E has a non–trivial probability distribution.

Poster Details

Please come to our poster at Pacific Ballroom #193 at 6.30 pm today.

Thank you!