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Linear Time Invariant (LTI) Systems

LTI systems appear in autoregressive processes, control and RL
systems. Formally,

Xt+1 = AXt + ηt+1 (1)

Xt, ηt ∈ Rn. Xt is state vector, ηt is noise vector.
A is state transition matrix : characterizes the LTI system.
Assume {ηt}∞t=1 is isotropic and subGaussian.
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Learning A from data

Goal : Learn A from {Xt}Tt=1

Â = inf
Ao

T∑
t=1

||Xt+1 −AoXt||22

Estimation error

E = A− Â = (

T∑
t=1

ηt+1X
>
t )(

T∑
t=1

XtX
>
t )+ (2)

Error analysis hard : {Xt}Tt=1 are not independent.
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Related Work

Faradonbeh et. al. (2017). Finite time identification in
unstable linear systems.
Simchowitz et. al. (2018). Learning without mixing :
Towards a sharp analysis of linear system identification.

Past works fail to capture correct behavior for all A.
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Main Technique

The analysis proceeds in two steps :
Show invertibility of sample covariance matrix :∑T

t=1XtX
>
t ≈ f(T )I.

Show the following for self–normalized martingale term :

(

T∑
t=1

ηt+1X
>
t )(

T∑
t=1

XtX
>
t )−1/2 = O(1)
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Sample Covariance Matrix

Let ρi(A) be the absolute value of ith eigenvalue of A with
ρi(A) ≥ ρi+1(A). Then

ρi ∈ S0 =⇒ ρi(A) ≤ 1− C/T
ρi ∈ S1 =⇒ ρi(A) ∈ [1− C/T, 1 + C/T ]

ρi ∈ S2 =⇒ ρi(A) ≥ 1 + C/T

Theorem

ρi(A) ∈ S0 =⇒
∑T

t=1XtX
>
t = Θ(T )

ρi(A) ∈ S1 =⇒
∑T

t=1XtX
>
t = Ω(T 2)

ρi(A) ∈ S2 =⇒
∑T

t=1XtX
>
t = Ω(eaT ) (under necessary

and sufficient “regularity” conditions only)
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Self Normalized Martingale

Theorem (Abbasi-Yadkori et. al. 2011)

Let V be a deterministic matrix with V � 0. For any 0 < δ < 1
and {ηt, Xt}Tt=1 defined as before, we have with probability 1− δ

||(ȲT−1)−1/2
T−1∑
t=0

Xtη
′
t+1||2

≤ R

√√√√8n log

(
5det(ȲT−1)1/2ndet(V )−1/2n

δ1/n

)
(3)

where Ȳ −1τ = (Yτ + V )−1 and R2 is the subGaussian parameter
of ηt.
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Main Result 1

Combining the previous results (and a few more matrix
manipulations) we show

Theorem

ρi(A) ∈ S0 ∪ S1 ∪ S2 =⇒ ||E||2 = O(T−1/2)

ρi(A) ∈ S1 ∪ S2 =⇒ ||E||2 = O(T−1)

ρi(A) ∈ S2 =⇒ ||E||2 = O(e−aT ) (under necessary and
sufficient “regularity” conditions only)
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Main Result 2

Regularity condition : All eigenvalues greater than one should
have geometric multiplicity one.

Theorem
If the regularity conditions are violated then OLS is inconsistent.

OLS cannot learn A = ρI where ρ ≥ 1.5. E has a non–trivial
probability distribution.
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Please come to our poster at Pacific Ballroom #193 at 6.30 pm
today.

Thank you !
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