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Distribution robustness

In practice, the learner does not know what kind of data it will run into in advance.

Q: Can we expect to be able to use the same procedure for a wide variety of
distributions?
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A natural baseline: ERM

Empirical risk minimizer:

ŵERM ∈ arg min
w

1
n

n∑
i=1

l(w; zi)

≈ arg min
w

R(w)

Risk:

R(w) ..=
∫
l(w; z) dµ(z)

When data is sub-Gaussian, ERM via (S)GD is “optimal.”
(Lin and Rosasco, 2016)

How does ERM fare under much weaker assumptions?
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ERM is not distributionally robust

Consider iid x1, . . . , xn with varµ x = σ2.

x ..= 1
n

n∑
i=1

xi

Ex. Normally distributed data.

|x− Ex| ≤ σ

√
2 log(δ−1)

n

Ex. All we know is σ2 <∞.

σ√
nδ

(
1− e δ

n

)(n−1)/2

≤ |x− Ex| ≤ σ√
nδ

If unlucky, lower bound holds w/ prob. at least δ.
(Catoni, 2012)
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Intuitive approach: construct better feedback

x̂M
..= arg min

u∈R

n∑
i=1

ρ
(
xi − u
s

)

Figure: Different choices of ρ (left) and ρ′ (right): ρ(u) as u2/2 (cyan), as |u| (green), and as log cosh(u)
(purple).
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Intuitive approach: construct better feedback

Assuming only that the variance σ2 is finite,

|x̂M − Ex| ≤ 2
√

2 log(δ−1)
n

σ

at probability 1− δ or greater.
(Catoni, 2012)

Compare:

x:
√
δ−1 vs. x̂M: 2

√
2 log(δ−1)
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Previous work considers robustified objectives

LM(w) ..= arg min
u∈R

n∑
i=1

ρ

(
l(w; zi)− u

s

)
↓

ŵBJL = arg min
w

LM(w).

(Brownlees et al., 2015)

+ General purpose distribution-robust risk bounds.

+ Can adapt to a “guess and check” strategy.
(Holland and Ikeda, 2017b)

– Defined implicitly, difficult to optimize directly.

– Most ML algorithms only use first-order information.
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Our approach: aim for risk gradient directly

Early work by Holland and Ikeda (2017a) and Chen et al. (2017).

Later evolutions in Prasad et al. (2018); Lecué et al. (2018).
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Our proposed robust GD

Key sub-routine:

ĝ(w) =
(
θ̂1(w), . . . , θ̂d(w)

)
≈ ∇R(w)

θ̂j ..= arg min
θ∈R

n∑
i=1

ρ

(
l′j(w; zi)− θ

sj

)
, j ∈ [d].

Plug into descent update:

ŵ(t+1) = ŵ(t) − α(t) ĝ(ŵ(t)).

Variance-based scaling:

s2
j =

var l′j(w; z)n
log (2δ−1) .
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Our proposed robust GD

+ Guarantees requiring only finite variance:

O

(
d (log(dδ−1) + d log(n))

n

)
+O

(
(1− α)T

)
+ Theory holds as-is for implementable procedure.

+ Small overhead; fixed-point sub-routine converges quickly.

– Naive coordinate-wise strategy leads to sub-optimal guarantees; in principle,
can do much better.

(Lugosi and Mendelson, 2017, 2018)

– If non-convex, useful exploration may be constrained.
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Looking ahead

Q: Can we expect to be able to use the same procedure for a wide variety of
distributions?

A: Yes, using robust GD. However, it is still far from optimal.
Catoni and Giulini (2017); Lecué et al. (2018); Minsker (2018)

Can we get nearly sub-Gaussian estimates in linear time?
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