Provably Efficient RL via Latent State Decoding

Simon S. Du

Akshay Krishnamurthy

Nan Jiang

Alekh Agarwal

Miro Dudík

John Langford

Theory

Simple tabular environments No generalization

Simple tabular environments No generalization

Practice

Complex rich-observation environments Generalization via function approximation

Theory

Simple tabular environments No generalization

Practice

Complex rich-observation environments Generalization via function approximation

Can we design provably sample-efficient RL algorithms for rich observation environments?

A structured model for rich observation RL

Agent only observes rich context (visual signal)

- Agent only observes rich context (visual signal)
- Environment summarized by small hidden state space (agent location)

- Agent only observes rich context (visual signal)
- Environment summarized by small hidden state space (agent location)

- Agent only observes rich context (visual signal)
- Environment summarized by small hidden state space (agent location)

- Agent only observes rich context (visual signal)
- Environment summarized by small hidden state space (agent location)
- State can be decoded from observation

Idea: Find a function that decodes hidden states from contexts.

Idea: Find a function that decodes hidden states from contexts.

Reduce to a tabular problem

Idea: Find a function that decodes hidden states from contexts.

Reduce to a tabular problem

Main Challenge: There is no label (we cannot observe hidden states).

Our Approach: Learn a function that predicts the conditional probability of (previous state, action) pairs from contexts.

(assume access a regression oracle to learn this function)

State at level h: s1, s2 Actions: a1, a2

Our Approach: Learn a function that predicts the conditional probability of (previous state, action) pairs from contexts.

(assume access a regression oracle to learn this function)

State at level h: s1, s2 Actions: a1, a2

Different conditional probabilities correspond to different states

State at level h+1:

s4

Our Approach: Learn a function that predicts the conditional probability of (previous state, action) pairs from contexts.

(assume access a regression oracle to learn this function)

State at level h: s1, s2 Actions: a1, a2

Different conditional probabilities correspond to different states

State at level h+1:

63

s4

SS

State classification

Theorem: Our algorithm can find a near-optimal decoder with poly(M,K,H) samples in polynomial time, with H calls to supervised learning black box.

Theorem: Our algorithm can find a near-optimal decoder with poly(M,K,H) samples in polynomial time, with H calls to supervised learning black box.

M = Number of hidden states, K = Number of actions, H = Time horizon

Statistical efficiency

Theorem: Our algorithm can find a near-optimal decoder with poly(M,K,H) samples in polynomial time, with H calls to supervised learning black box.

M = Number of hidden states, K = Number of actions, H = Time horizon

Statistical efficiency

Theorem: Our algorithm can find a near-optimal decoder with poly(M,K,H) samples in polynomial time, with H calls to supervised learning black box.

 $M \neq N$ umber of hidden states, K = Number of actions, H = Time horizon

Computational efficiency

Statistical efficiency

Theorem: Our algorithm can find a near-optimal decoder with poly(M,K,H) samples in polynomial time, with H calls to supervised learning black box.

M = Number of hidden states, K = Number of actions, H = Time horizon

Computational efficiency

Rich observations

Theorem: Our algorithm can find a near-optimal decoder with poly(M,K,H) samples in polynomial time, with H calls to supervised learning black box.

M Number of hidden states, K = Number of actions, H = Time horizon

Computational efficiency

Rich observations

Assumptions

- Supervised learner expressive enough
- Latent states reachable and identifiable

Algorithm details and experiments @ Poster #208