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Theory 
Simple tabular environments

No generalization

Practice 
Complex rich-observation environments 
Generalization via function approximation

Can we design provably sample-efficient RL algorithms 
for rich observation environments? 
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Block MDPs

A structured model for rich observation RL
• Agent only observes rich context (visual signal)
• Environment summarized by small hidden state space (agent location)
• State can be decoded from observation

Context x

  State s

Action a

  State s

Context x

Action a(Left)

For H steps



Objective: Find a Decoder



Objective: Find a Decoder

Idea: Find a function that decodes 
hidden states from contexts. f(                     )  =

context state



Objective: Find a Decoder

Idea: Find a function that decodes 
hidden states from contexts. f(                     )  =

context state

Reduce to a tabular problem



Objective: Find a Decoder

Idea: Find a function that decodes 
hidden states from contexts. f(                     )  =

context state

Main Challenge: There is no label (we cannot observe hidden states).

Reduce to a tabular problem
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Our Approach: Learn a function that 
predicts the conditional probability of 
(previous state, action) pairs from 
contexts.

(assume access a regression oracle to 
learn this function)

f(                     )  =

context

Different conditional probabilities 
correspond to different states s1,a1 s1,a2 s2,a1 s2,a2

s1,a1 s1,a2 s2,a1 s2,a2

State classification

s1,a1 s1,a2 s2,a1 s2,a2

State at level h: s1, s2

Actions: a1, a2

State at level h+1: 
s3 s4
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Guarantees

Theorem: Our algorithm can find a near-optimal decoder with poly(M,K,H) 
samples in polynomial time, with H calls to supervised learning black box.


M = Number of hidden states, K = Number of actions, H = Time horizon

Statistical efficiency

Computational efficiency Rich observations

Assumptions

• Supervised learner expressive enough

• Latent states reachable and identifiable



Algorithm details and experiments  
@ Poster #208  


