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Introduction

Machine learning models are vulnerable to adversarial perturbations.

Figure: Adding invisible perturbations to the images can lead the model to wrong
predictions with high confidence (Goodfellow et al. 2015)
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Introduction

Adversarial training: currently the most effective approach to training
models robust to adversarial perturbations (Madry et al, 2017).

Natural training:
min
f ∈F

E`(f (x), y)

Adversarial training:

min
f ∈F

E max
x′∈B∞

x (ε)
`(f (x′), y)
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Introduction

Adversarially robust generalization can be hard.

Figure: Model can achieve 96% adversarial training accuracy whereas the
adversarial test accuracy is only 47% (Madry et al. 2017, Schmidt et al. 2018)
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Introduction

How can we better understand adversarially robust generalization?

This paper: Rademacher complexity analysis.
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Preliminaries

Feature-label space X × Y.

Hypothesis class F .

Loss function `(f (x), y), f ∈ F , `F := {`(f (·), ·) : f ∈ F}.
Empirical risk: Rn(f ) := 1

n

∑n
i=1 `(f (xi ), yi )

Population risk R(f ) := E[`(f (x), y)]

Rademacher complexity

RS(F) :=
1

n
Eσ

[
sup
f ∈F

n∑
i=1

σi f (xi )

]
,
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Preliminaries

Theorem

(Bartlett and Mendelson, 2002, Mohri et al. 2012) Suppose that
`(f (x), y) ∈ [0, 1]. Then, for any δ ∈ (0, 1), with probability at least 1− δ,
the following holds for all f ∈ F ,

R(f ) ≤ Rn(f ) + 2RS(`F ) + 3

√
log 2

δ

2n
.
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Preliminaries

Adversarial loss function ˜̀(f (x), y) := maxx ′∈B∞
x (ε) `(f (x′), y), f ∈ F

Adversarial empirical risk:

R̃n(f ) :=
1

n

n∑
i=1

˜̀(f (xi ), yi ).

Adversarial population risk

R̃(f ) := E[˜̀(f (x), y)],

Adversarial Rademacher complexity

RS(˜̀F ), where ˜̀F := {˜̀(f (·), ·) : f ∈ F}
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Preliminaries

Corollary

For any δ ∈ (0, 1), with probability at least 1− δ, the following holds for
all f ∈ F ,

R̃(f ) ≤ R̃n(f ) + 2RS(˜̀F ) + 3

√
log 2

δ

2n
.

How do we compare RS(`F ) and RS(˜̀F )?
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Main Results

Binary linear classifier

Theorem

Let F := {〈x,w〉 : ‖w‖p ≤W } and
F̃ := {minx′∈B∞

x (ε) y〈w, x′〉 : ‖w‖p ≤W }. Suppose that 1
p + 1

q = 1. Then,
there exists a universal constant c ∈ (0, 1) such that

max{RS(F), cεW
d

1
q

√
n
} ≤ RS(F̃) ≤ RS(F) + εW

d
1
q

√
n
.

Tight upper and lower bounds.

Adversarial Rademacher complexity is never smaller than its natural
counterpart.

Unavoidable dimension dependence in adversarial Rademacher
complexity (unless p = 1).
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Main Results

Multi-class linear classifiers: similar dimension dependence also exists
in the margin-based risk bound.

Lower bound of adversarial Rademacher complexity for neural
networks: existence of dimension dependence.

Risk bound on the adversarial loss for one-hidden layer ReLU network
via SDP surrogate loss (Raghunathan et al. 2018).
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Experiments

MNIST, Linear classifier

0.000 0.005 0.010 0.015 0.020 0.025 0.030
perturbation

0.05

0.10

0.15

0.20

0.25

0.30

0.35

tr
a
in

_a
cc

 -
 t

e
st

_a
cc

¸=0:0

¸=0:001

¸=0:002

Figure: `1 regularization reduces adversarial generalization gap.
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Experiments

MNIST, Linear classifier

0.000 0.005 0.010 0.015
perturbation

0.10

0.15

0.20

0.25

0.30

0.35

tr
a
in

_a
cc

 -
 t

e
st

_a
cc

d=196

d=784

d=3136

Figure: Adversarial generalization gap becomes larger in higher dimensions.
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Experiments

MNIST, four layer CNN
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Figure: `1 regularization reduces adversarial generalization gap.
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Thank you

Poster: Pacific Ballroom 207
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