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Introduction

Machine learning models are vulnerable to adversarial perturbations.
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Figure: Adding invisible perturbations to the images can lead the model to wrong
predictions with high confidence (Goodfellow et al. 2015)
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Introduction

@ Adversarial training: currently the most effective approach to training
models robust to adversarial perturbations (Madry et al, 2017).
o Natural training:

min E4(f(x), y)

@ Adversarial training:

inE U(F(X
mink  max (f(x),y)
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Introduction

Adversarially robust generalization can be hard.
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Figure: Model can achieve 96% adversarial training accuracy whereas the
adversarial test accuracy is only 47% (Madry et al. 2017, Schmidt et al. 2018)
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@ How can we better understand adversarially robust generalization?

@ This paper: Rademacher complexity analysis.
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Preliminaries

Feature-label space X x ).

Hypothesis class F.

Loss function ¢(f(x),y), f € F, {r := {L(f(-), ) : f € F}.
Empirical risk: R,(f) := 130 6(f(x;), yi)

Population risk R(f) := E[{(f(x), y)]

Rademacher complexity

Rs(F) = —Eq

supZa,f(x, ] )

feF 4
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Preliminaries

Theorem

(Bartlett and Mendelson, 2002, Mohri et al. 2012) Suppose that

U(f(x),y) €[0,1]. Then, for any § € (0,1), with probability at least 1 — ¢,
the following holds for all f € F,

log 2
R(F) < Ra(f) + 2Rs(£7) + 3 %.
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Preliminaries

Adversarial loss function £(f(x),y) := max,ecpeo() U(f(X'),y), f € F

Adversarial empirical risk:

Ralf) = - 3" (7 (x3). 1)
i=1

Adversarial population risk

R(f) == E[£(f(x), y)],
@ Adversarial Rademacher complexity

Rs(lr), where (r := {((f(-),"): f € F}
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Preliminaries

For any 6 € (0,1), with probability at least 1 — §, the following holds for
all f € F,

= =~ =~ Iog%
R(f) < R,,(f) + 29‘{5(5}‘) +3 o

How do we compare Rs(¢x) and Rs(lr)?
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Main Results

Binary linear classifier

Theorem

Let F := {(x,w) : [|w]|, < W} and
F = {minycpeo(e) y(w,x') : wl|l, < W}. Suppose that ,l) +% = 1. Then,
there exists a universal constant c € (0,1) such that

max{Rs(F), cew%} < 9s(F) < s() +eW 2.

@ Tight upper and lower bounds.

@ Adversarial Rademacher complexity is never smaller than its natural
counterpart.

@ Unavoidable dimension dependence in adversarial Rademacher
complexity (unless p = 1).
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Main Results

@ Multi-class linear classifiers: similar dimension dependence also exists
in the margin-based risk bound.

@ Lower bound of adversarial Rademacher complexity for neural
networks: existence of dimension dependence.

@ Risk bound on the adversarial loss for one-hidden layer ReLU network
via SDP surrogate loss (Raghunathan et al. 2018).

Dong Yin (UC Berkeley) Adversarially Robust Generalization ICML, 2019 11 /15



MNIST, Linear classifier
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Figure: ¢, regularization reduces adversarial generalization gap.
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MNIST, Linear classifier
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Figure: Adversarial generalization gap becomes larger in higher dimensions.
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MNIST, four layer CNN
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Figure: ¢; regularization reduces adversarial generalization gap.

Dong Yin (UC Berkeley) Adversarially Robust Generalization ICML, 2019 14 / 15



Thank you

Poster: Pacific Ballroom 207
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