
Optimality Implies Kernel Sum Classifiers are
Statistically Efficient

Raphael A. Meyer1 Jean Honorio1

1Dept. of Computer Science, Purdue University



Generalization Error Proofs

} Assume we have n i.i.d. labeled data samples
(x1, y1), . . . , (xn, yn)

x ∈ X , y ∈ {−1, 1}

} Define a set of possible estimators to map inputs to labels

F ⊆ {f : X 7→ {−1, 1}}

} Prove the empirical error is close to the expected error
◦ Rademacher Complexity, PAC Bayes, etc.
◦ Prove this for all f ∈ F
◦ This includes low-accuracy estimators f
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E
x,y

[ℓ(f(x), y)] ≤ 1
n

n∑
i=1

ℓ(f(xi), yi) + ε
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Optimization Theory

} Optimization is often used to find estimators in ML

◦ Regression, Kernel SVM, etc.

} These tools are used in practice
} Strong theoretical guarantees in polynomial time

◦ Karush-Kuhn-Tucker (KKT) Conditions

} How can considering optimal estimators help us understand
statistical efficiency?
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Multiple Kernel Learning & Classification

Given:

} Dataset with n samples {(x1, y1), . . . , (xn, yn)}
} m kernels k1, . . . , km

Learn:

} Linear combination θ of kernels s.t. the resulting kernel

k
Σ
(·, ·) :=

m∑
t=1

θtkt(·, ·)

Classifies the dataset well

} Constraints on θ vary among papers

◦ θ may be convex combination, 0/1 vector, etc.
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Prior Work: Generalization Error

} Estimators are uniquely identified by α ∈ Rn and θ

f(x;α) =
n∑

i=1
αiyikΣ

(xi,x)

Theorem [CMR10]
For all kernels, vectors α, and convex combinations θ where

} kt(xi,xi) ≤ R2 for all xi and kt

} αᵀK̃
Σ
α ≤ C2 for kernel matrix K̃

Σ
=

∑m
t=1 θtK̃t

We have

E
x,y

[ℓ(f(x;α), y)] ≤ 1
n

n∑
i=1

ℓ(f(xi;α), yi)+O
(

CR√
n
√
lnm

)
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How can we understand αᵀK̃
Σ
α?

If α
Σ

solves the SVM problem with K̃
Σ
,

How does αᵀK̃
Σ
α depend on

} The number of kernels?

} The conditioning of the kernels?

These questions are ill-posed:

} All α ∈ Rn define a feasible estimator
} So there always exists a feasible estimator with large αᵀK̃α

} But Support Vector Machines pick α in practice

5



How can we understand αᵀK̃
Σ
α?

If α
Σ

solves the SVM problem with K̃
Σ
,

How does αᵀK̃
Σ
α depend on

} The number of kernels?
} The conditioning of the kernels?

These questions are ill-posed:

} All α ∈ Rn define a feasible estimator
} So there always exists a feasible estimator with large αᵀK̃α

} But Support Vector Machines pick α in practice

5



How can we understand αᵀK̃
Σ
α?

If α
Σ

solves the SVM problem with K̃
Σ
,

How does αᵀK̃
Σ
α depend on

} The number of kernels?
} The conditioning of the kernels?

These questions are ill-posed:

} All α ∈ Rn define a feasible estimator
} So there always exists a feasible estimator with large αᵀK̃α

} But Support Vector Machines pick α in practice

5



How can we understand αᵀK̃
Σ
α?

If α
Σ

solves the SVM problem with K̃
Σ
,

How does αᵀK̃
Σ
α depend on

} The number of kernels?
} The conditioning of the kernels?

These questions are ill-posed:

} All α ∈ Rn define a feasible estimator

} So there always exists a feasible estimator with large αᵀK̃α

} But Support Vector Machines pick α in practice

5



How can we understand αᵀK̃
Σ
α?

If α
Σ

solves the SVM problem with K̃
Σ
,

How does αᵀK̃
Σ
α depend on

} The number of kernels?
} The conditioning of the kernels?

These questions are ill-posed:

} All α ∈ Rn define a feasible estimator
} So there always exists a feasible estimator with large αᵀK̃α

} But Support Vector Machines pick α in practice

5



How can we understand αᵀK̃
Σ
α?

If α
Σ

solves the SVM problem with K̃
Σ
,

How does αᵀK̃
Σ
α depend on

} The number of kernels?
} The conditioning of the kernels?

These questions are ill-posed:

} All α ∈ Rn define a feasible estimator
} So there always exists a feasible estimator with large αᵀK̃α

} But Support Vector Machines pick α in practice

5



How can we understand αᵀK̃
Σ
α?

If α
Σ

solves the SVM problem with K̃
Σ
,

How does αᵀ
Σ
K̃

Σ
α

Σ
depend on

} The number of kernels?
} The conditioning of the kernels?

These questions are ill-posed:

} All α ∈ Rn define a feasible estimator
} So there always exists a feasible estimator with large αᵀK̃α

} But Support Vector Machines pick α in practice

5



Our Approach
Given: K̃1 K̃2 · · · K̃m K̃

Σ

Optimize: α1 α2 · · · αm α
Σ

Dual SVM

Assume: For all t = 1, 2, . . . ,m,
Assume αᵀ

t K̃tαt ≤ B2

Then αᵀ
Σ
K̃

Σ
α

Σ
≤ 3m−0.58B2

KKT Conditions

Then: Estimator y(x;α
Σ
) generalizes well

O(BRm0.208√lnm√n )

Rademacher Complexity
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Conclusion

} Leverage Optimization Theory to ask and answer well-posed
questions about the statistics of practical estimators.

} Consider αᵀK̃α in Multiple Kernel Learning as a specific case
} Several possible applications of this idea beyond kernels
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