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© Define a set of possible estimators to map inputs to labels

FCA{f: X —{-1,1}}

© Prove the empirical error is close to the expected error
o Rademacher Complexity, PAC Bayes, etc.
o Prove this for all fe F
o This includes low-accuracy estimators f
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© Optimization is often used to find estimators in ML
o Regression, Kernel SVM, etc.
© These tools are used in practice
© Strong theoretical guarantees in polynomial time
o Karush-Kuhn-Tucker (KKT) Conditions
© How can considering optimal estimators help us understand

statistical efficiency?
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© m kernels ky, ..., kn

Learn:

© Linear combination @ of kernels s.t. the resulting kernel
ke(v0) = Zetkt(‘, )
t=1
Classifies the dataset well

© Constraints on @ vary among papers
o 6 may be convex combination, 0/1 vector, etc.
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How can we understand a™K, a?

If oy solves the SVM problem with kz,
How does al K_a, depend on

© The number of kernels?

© The conditioning of the kernels?
These questions are ill-posed:

© All @ € R" define a feasible estimator
® So there always exists a feasible estimator with large a7 Ko

© But Support Vector Machines pick « in practice
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Given:

Optimize:

Assume:

Then:

Ki kK, - K, K,
\ \ \ \
|/ Dualsvil |
] 1 1 ]
a1 Qo e am OtZ

Forallt=1,2,...,m,

Assume o Kia; < B?

KKT Conditions

Then agkzaz < 3m 0582

J Rademacher Complexity

Estimator y(x; o, ) generalizes well
o( BRm®2%8/In m)
7n
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Conclusion

© Leverage Optimization Theory to ask and answer well-posed
questions about the statistics of practical estimators.

© Consider aTKa in Multiple Kernel Learning as a specific case

© Several possible applications of this idea beyond kernels
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