Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints

<u>Andrew Cotter</u>¹, Maya Gupta¹, Heinrich Jiang¹, Nathan Srebro², Karthik Sridharan³, Serena Wang¹, Blake Woodworth², Seungil You⁴

¹Google Research, ²Toyota Technological Institute at Chicago, ³Cornell University, ⁴Kakao Mobility (Partly performed while N.S. was visiting Google, and S.Y. was employed by Google)

Constrained Optimization

minimize :
$$\mathbb{E}_{x \sim \mathcal{D}} \left[\ell_0 \left(x; \theta \right) \right]$$

subject to : $\mathbb{E}_{x \sim \mathcal{D}} \left[\ell_i \left(x; \theta \right) \right] \leq 0$
 $\forall i \in \{1, 2, ..., m\}$

- Applications include ML fairness, churn reduction, constraining true/false positive/negative rates, and more
- We want the constraints to hold in expectation, but will typically train using a finite training set. In other words, we're interested in constraint generalization
- We give a "trick" for improving constraint generalization (at a cost to the objective function)

Intuition: Hyperparameter Optimization

$$\mathcal{L}\left(\theta,\lambda\right) = \mathbb{E}_{x\sim\mathcal{D}}\left[\ell_{0}\left(x;\theta\right) + \sum_{i=1}^{m} \lambda_{i}\ell_{i}\left(x;\theta\right)\right]$$

Thought Experiment

- Have two i.i.d. samples, "training" and "validation"
 - a. For several fixed λ s, train a model $\theta^*(\lambda)$ that minimizes the Lagrangian on the training set
 - b. Choose a λ^* such that $\theta^*(\lambda^*)$ satisfies the constraints on the validation set
- If it works, validation constraint generalization will depend on the complexity of the space of Lagrange multipliers λ , not of the model parameters θ

Two-Player-Game

$$\mathcal{L}\left(\theta,\lambda\right) = \mathbb{E}_{x \sim \mathcal{D}}\left[\ell_{0}\left(x;\theta\right) + \sum_{i=1}^{m} \lambda_{i}\ell_{i}\left(x;\theta\right)\right]$$

Our "trick" for improving constraint generalization:

- Think of constrained optimization as a two-player game
- Assign different independent samples to the two players

The resulting game is *non-zero-sum*:

- The two players have different datasets, so they optimize different functions
- In recent work [ALT'19], we considered a Lagrangian-like non-zero-sum game
 - Here, we extend this work to prove better constraint generalization bounds

Results - Upper Bounds

Suboptimality Bound

Infeasibility Bound

One dataset: Depends on model complexity (e.g. Rademacher)

Two datasets: Depends on model complexity Independent of model complexity

We provide several algorithms for playing this two-player game:

- Under certain assumptions, the in-expectation bounds satisfy the above
 - Instead of depending on the model complexity, the two-dataset infeasibility bound depends on the number of constraints
- We also perform experiments
 - In practice, using two independent datasets generally improves constraint generalization

{acotter, mayagupta, heinrichj, serenawang}@google.com

sridharan@cs.cornell.edu

{nati,blake}@ttic.edu

seungil.you@gmail.com

Thank You!

Poster: Pacific Ballroom #203