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Adaptivity in Machine Learning

« After t tested models, how well does the final model
generalize?

» Depends on how the accuracies are computed
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« Reporting exact sample accuracy allows for great overfitting
« Better bounds can be obtained by having a non-trivial response mechanism
in charge of reporting accuracy on the test data
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« How do we construct a mechanism such that its responses generalize to the
population?
»  want 95% reported accuracy on test data = 95% accuracy on fresh data from same population

« For such a good mechanism, how much does a possibly adversarial analyst overfit?
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Framework of Dwork et al. (2015)

query a1

g onswer a1

mechanism dataset S

S~ P"

Y 22

gonswer a2

. d :
P- population distribution q; : supp(P) — |0, 1|%- queries posed by analyst
7 - sample size a; € Rd - answers given by mechanism

S=1{X1,...,X,} -dataset
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Generalization Error

Framework of Dwork et al. (2015)

query a1

g onswer a1

mechanism dataset S

S~ P"

Y 22

gonswer 92

Goal: design a mechanism such that, for £ queries posed by the analyst,
generalization error is at most e:

~

max ||Ex~p|q:(X)] — a;]|co < € with high probability.
1<i<t




examples of analysts

iterative
human algorithms, e.g.
analyst gradient
descent
qi- Clg?rsg;%c?hon 4i- gradient of
1-th classifier §n theoﬁrggﬂ[récge'trﬁ
data set

examples of mechanisms

empirical
mechanism

Gaussian
mechanism

truncation to
a fixed number
of bits
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Known bounds on the generalization error after ¢ queries:

ova optimistic overly pessimistic

non-adaptive * 2 {Ully adaptive

analyst analyst
L R R O
generalization error generalization error

5 (\/loggd)) 5 ((tiz/);M)

Are there natural categories of analysts which interpolate
between logarithmic and polynomial error?
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Analysts as Dynamical Systems

We model the data analyst as a dynamical system:

ht - history, i.e. encoding of past interactions
he = Pi(he—1, ar-1) Y - arbitrary transition map
dt = ft(ht) ft - arbitrary function

With no restriction on the transition map, this representation captures
an arbitrary adaptive analyst
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Stability of Natural Analysts

« Stabllity of dynamical systems makes analysts natural

« Stability ensures convergence of algorithms, encodes
different human biases, like sensitivity to interactions far
enough in the past, etc.

- Encoding different stability notions, we introduce two
main classes of natural analysts: progressive and
conservative
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Progressive analysts contract their history as:
|[Ye(h,a) — (R, a)|| < Allh = B, VAR a
forsome A € (0,1).

The parameter A encodes how fast past interactions
with the mechanism are forgotten;
A~ 0 Is minimal adaptivity, while A =~ 1 implies full

adaptivity.
examples of progressive analysts
human algorithmic
analysts analysts
analysts with stable RNNG,
Bellman

recency bias

operator
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Main Theorem for Progressive Analysts

There exists a computationally efficient mechanism for
answering t gqueries chosen adaptively by a progressive
analyst such that the overall generalization error is at most

log(1/(1 — X)) log(t)d

~ (:)
Y

log(1/A)n
6000 | For A=1—1/t the analyst s fully adaptive and
5000 we recover a (suboptimal) fully adaptive bound
Tl 0o O(\/td/n)
E“g ZZZ For A = 0 the analyst can only adapt to the last

‘ J answer and we have
1000 -
, O(+/log(t)d/n)
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Conservative Analysts

Conservative analysts contract new evidence* as:
¢ (h,a) —pi(h,a’)|| < nella —d'|, Vh,a,d
for some sequence {n;} such that 1m 7: = 0.

The sequence {n;} encodes how fast the knowledge of
the analyst saturates.

examples of conservative analysts

human algorithmic
analysts analysts

. optimization
analysts with algorithms, e.g.
anchoring bias gradient

descent

*alternate condition for conservative analysts given in paper
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Main Theorem for Conservative Analysts

There exists a computationally efficient mechanism for
answering t queries chosen adaptively by o
conservative analyst such that the overall
generalization error is at most

~ [ (min . 0 1/4 .
~ O <( {t,K(n\/)ﬁ}dl 3(1)) ) , K (1) = min{t : n; < C/Vd}

for some constant C.

f n: = 0,Vt we recover the non-adaptive bound O(+/log(td)/n)

If {n:} has aslow decay, we recover the (tight) bound under
full adaptivity @((td)1/4/\/ﬁ)



Summary

« Generadlization bounds in adaptive data analysis show o
wide gap due to considering only overly optimistic or
overly pessimistic settings

« In our work, we smoothly interpolate between the two by
using stabllity parameters as a knob

Future Directions

« Empirical evaluation of patterns of human adaptivity

« Preventing the analyst from knowing the distribution of
the dato

« Limiting query complexity



Thank you



