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Generalized Formulation for GANs

min
f ∈F

Ez∼Pz [φ(f (g(z)))] + Ex∼Pr [ψ(f (x))],

min
g∈G

Ez∼Pz [ϕ(f (g(z)))],
(1)

where

Pz : the source distribution in Rnz ;
Pr : the target (real) distribution in Rnr ;
g : the generative function Rnz → Rnr ;
f : the discriminative function Rnr → R;
G: the generative function space;
F : the discriminative function space;

φ, ψ, ϕ: R→ R are loss metrics.

GAN : φ(x) = ψ(−x) = − log(σ(−x))

WGAN : φ(x) = ψ(−x) = x

LSGAN : φ(x) = ψ(−x) = (x + α)2

We denote the generation distribution by Pg .
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The Gradient Uninformativeness

The problem that the gradient from the discriminator does not contain any informative
about the real distribution.

A new perspective for the training instability / convergence issue of GANs.

For GANs with unrestricted F :

f ∗(x) = arg min
f (x)∈R

Pg (x)φ(f (x)) + Pr (x)ψ(f (x)), ∀x . (2)

f ∗(x) is independently defined and only reflects the local densities Pr (x) and Pg (x);

∇x f ∗(x) does not reflect any information about the other distribution, if the supports of
two distributions are disjoint.
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The Gradient Uninformativeness

Unrestricted GANs MUST suffer from this problem

Restricted GANs May suffer from this problem

GANs with W-Distance May suffer from this problem

Lipschitz GANs DO NOT suffer from this problem
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Lipschitz Generative Adversarial Nets (LGANs)

min
f ∈F

Ez∼Pz [φ(f (g(z)))] + Ex∼Pr [ψ(f (x))] + λ · k(f )2 ,

min
g∈G

Ez∼Pz [ϕ(f (g(z)))]. (3)

We require φ and ψ to satisfy:{
φ′(x) > 0,

φ′′(x) ≥ 0,
and φ(x) = ψ(−x). (4)

Any increasing function with non-decreasing derivative.
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k(f ): Lipschitz constant of f



Lipschitz Generative Adversarial Nets (LGANs)

Theoretically guaranteed properties:

The optimal discriminative function f ∗ exists;

If φ is strictly convex, then f ∗ is unique;

There exists a unique Nash equilibrium where Pr = Pg and k(f ∗) = 0;

Do not suffer from gradient uninformativeness;

For each generated sample, the gradient directly points towards a real sample.
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Experiments: Gradient Uninformativeness

Gradient uninformativeness practically behaviors as noisy gradient.

(a) Disjoint Case (b) Overlapping Case
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Experiments: ∇x f
∗(x) in LGANs

∇x f ∗(x) directly point towards real samples.
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Experiments: f ∗ is Unique

Uniqueness of f ∗ leads to stabilized discriminative functions.

(a) f (x) in WGAN. (b) f (x) in LGANs.
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Experiments: Unsupervised Image Generation

LGANs, with different choices of φ(x), consistently outperform WGAN.

(a) Training curves on CIFAR. (b) Training curves on Tiny.
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Summary Poster: this evening, #19

Gradient uninformativeness

Unrestricted GANs MUST suffer from this problem

Restricted GANs May suffer from this problem

GANs with W-Distance May suffer from this problem

Lipschitz GANs DO NOT suffer from this problem

(5)

Lipschitz GANs:

Penalize the Lipschitz constant of f ;
Set φ(x) to be any increasing function with non-decreasing derivative;
If φ is strictly convex, then f ∗ is unique;
The gradients directly point towards real samples.
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