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Generalized Formulation for GANs

min Ez~p. [6(f(g(2)))] + Exr [0 (F(X))].

. (1)
min E.p,[¢(f(g(2)))],
geg
where
@ PP,: the source distribution in R"7; ‘ ¢, ¥, ¢: R — R are loss metrics. ‘
o IP,: the target (real) distribution in R";
@ g: the generative function R" — R"; GAN = ¢(x) = ¢(—x) = —log(a(—x))
o f: the discriminative function R — R; WGAN @ ¢(x) = ¢(—x) = x
@ G: the generative function space; LSGAN  :  ¢(x) = ¥(—x) = (x + @)
@ F: the discriminative function space;

We denote the generation distribution by Pg.
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The Gradient Uninformativeness

The problem that the gradient from the discriminator does not contain any informative
about the real distribution.

A new perspective for the training instability / convergence issue of GANS.

For GANs with unrestricted F:

f*(x) = argmin Pg(x)o(f(x)) +Pr(x)(f(x)), Vx. (2)
f(x)eR

e f*(x) is independently defined and only reflects the local densities P,(x) and Pg(x);

o V,f*(x) does not reflect any information about the other distribution, if the supports of
two distributions are disjoint.

Zhiming Zhou Lipschitz Generative Adversarial Nets ICML, 2019 3/11



The Gradient Uninformativeness

Unrestricted GANs MUST suffer from this problem
Restricted GANs May suffer from this problem

GANs with W-Distance May suffer from this problem

Lipschitz GANs DO NOT suffer from this problem
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Lipschitz Generative Adversarial Nets (LGANSs)

min Ezr.[0(F(8(2))] + Exr. [ (F(x))] +

A-k(F)? ),

min Bz, [o(F(6(2)))]- k(F): Lipschitz constant of f |

We require ¢ and v to satisfy:

¢/(x) >0 B
{¢//(X) >0 and ¢(X) - %/1(—X)-

’Any increasing function with non-decreasing derivative. ‘
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Lipschitz Generative Adversarial Nets (LGANSs)

Theoretically guaranteed properties:

@ The optimal discriminative function f* exists;

o If ¢ is strictly convex, then f* is unique;

@ There exists a unique Nash equilibrium where P, = P, and k(f*) = 0;
@ Do not suffer from gradient uninformativeness;

@ For each generated sample, the gradient directly points towards a real sample.
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Experiments: Gradient Uninformativeness

Gradient uninformativeness practically behaviors as noisy gradient.
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Experiments: V,f*(x) in LGANs

Vi f*(x) directly point towards real samples.
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Experiments: f* is Unique

Uniqueness of f* leads to stabilized discriminative functions.
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Experiments: Unsupervised Image Generation

LGANSs, with different choices of ¢(x), consistently outperform WGAN.
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Summary Poster: this evening, #19

@ Gradient uninformativeness

Unrestricted GANs MUST suffer from this problem
Restricted GANs May suffer from this problem
GANs with W-Distance May suffer from this problem
Lipschitz GANs DO NOT suffer from this problem

@ Lipschitz GANs:
o Penalize the Lipschitz constant of f;
o Set ¢(x) to be any increasing function with non-decreasing derivative;
o If ¢ is strictly convex, then f* is unique;
o The gradients directly point towards real samples.
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