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» Stroke thickness or shear of MNIST digit. /
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> Arrow of time (videos, time-series data, ...) /\
X c R28~28
Contributions:

> We propose the novel perspective to represent oriented data with k-currents from
geometric measure theory.

» Using this viewpoint within the context of GANs, we learn a generative model
which behaves equivariantly to specified tangent vectors.
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» Differential geometry, generalized through measure theory to deal with surfaces
that are not necessarily smooth.

» k-currents ~ generalized (possibly quite irregular) oriented k-dimensional surfaces
in d-dimensional space.

» The class of currents we consider form a linear space. It includes oriented
k-dimensional surfaces as elements.
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Generalizing Wasserstein GANs to k-currents

» T and S are 1-currents representing the data and the (partially oriented) latents.

> Pushforward operator gy, yields transformed current gy, S.
» We propose to use the flat metric IF) as a distance between ggSand T.

v

For k = o the flat metric is closely related to the Wasserstein—1 distance and positive
o-currents with unit mass are probability distributions.

3/12 Inspired by the optimal transport perspective on GANs: Bottou et al. 2017, Genevay et al. 2017
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» Simple k-vectors v = v, A - A v € A R? describe oriented k-dimensional subspaces
together with an area in RY:
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» The set of simple k-vectors forms a nonconvex cone in the vector space A¢RC.
» FOrv=viA- AV, W=W; A AW
(v,w) =det(VTW), [v| = /(v, V).

4/12 GraBmann 1844
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» Differential form: k-covector field w : R* - A*R?

» Integration of a k-form over an oriented k-dimensional manifold:

[ o= [ 0@ mm@) dr(@) = [M]()

» [M] is a k-current. In general, they are continuous linear functionals acting on
compactly supported smooth k-forms
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> Mass of a k-current: M(T) = supj |« T(w)
» The boundary operator d maps a k-current to a (k —1)-current: 0T (w) = T(dw)

[ w:[ dw.
oM M

» Normal currents T € Ny_x(R?): Finite mass and boundary mass M(T) + M(aT) < oo

v

Stokes’ theorem:

> A geometric view on the Wasserstein—1 distance:

Wi (S, T) = mingg_s_r MI(B). Example: S = &, T = dy:

X aB:8X_6y
‘k\

oy
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The flat metric
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The flat metric
Given two normal k-currents S € Ny x(RY), T € Ny x (RY) the flat metric as defined as

FA(S,T)=_min M(B)+AM(A) = sup (S-T)(w).

] *<A

Federer & Fleming 1960: The flat metric metrizes the weak* convergence on normal
currents with uniformly bounded mass and boundary mass.

Y

A

7/12 Whitney 1957, Federer & Fleming 1960
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Flat metric minimization: our theoretical result

in Fy(gg,S, T
min [F1(geyS.T)

Assumptions:
» Normal currents S € Ny z(R), T € Ny (RY).
» g: Zx 0 — X smooth in z with uniformly bounded derivative, loc. Lipschitz in 6.
» Parameter space © is compact.

Proposition. The map 0 — IF)(ggS, T) is Lipschitz continuous.
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N
. 1
min sup K., [{(wo9ge,(Vzgg-€:1) A A (V296 -€k))] - — Z(w(x;), Tia A ATik)
60 |u|*<1 NS

|de]* <1
» Implement w : RY > AKR? and gy : Z — X with deep nets
» Soft penalty for |w(x)[* < A, [|[dw(x)||* <1 (similar to WGAN-GP)
» Compute V,gg - ; with two calls to autograd (rop), (-, -) by k x k-determinant
» Train model by alternating stochastic gradient ascent/descent

9/12



lllustration on a 2D toy data set (5 points on a circle)

dataT it. 250 it. 500 it. 1000 it. 2000

10/12



lllustration on a 2D toy data set (5 points on a circle)

dataT it. 250 it. 500 it. 1000 it. 2000

10/12
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Learning equivariant latent representations
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See you at our poster, Pacific Ballroom #16, 6:30 tonight!
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( REPRESENTING DATA WITH NORMAL CURRENTS

) ( FLATGAN: LEARNING EQUIVARIANT REPRESENTATIONS

Contribution: We propose to view (partially) oriented data as a k-current.

ntuitively, k-currents form a linear space that includes k-dimensional oriented man-
ifolds as elements. The vector space of normal currents N;_y(R¢) consists of cur-
tents T with finite volume and finite volume of their boundary: M(T) + M(aT) < co.

THE FLAT METRIC

min  M(B)+AM(A4)= sup S(w)-T(w)
S-T=oB+A )
Mol<1

E(S,T)

For 0-currents: Itis related to the Wasserstein-1 distance.
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‘The intuition for 1-currents:
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Solving the above optimization problem ylelds a generator g, which behaves equiv-
ariantly 1o the specified tangent vectors.

llustration on a simple dataset in 2D:
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Federer & Fleming 1960. The flat
currents with unitormiy bounded mass and oundary mass:

Fy(T,T;) >0 ifandonly if T; T, i.e., Ty(w) - T(w), for all € CS(REA*R).
Proposition. Let S € Ny z (R'), T & Ny y(R?) be normal currents. Assume gg: Z —

¥ is smooth in z with uniformly bounded derivative and locally Lipschitz in 0. Then,
the map 0 + F(gq;5. T) is Lipschitz continuous on any compact parameter set .

Presented at e Inernatona Conlrence on Machne Learming (GML), Los Angees, 2015
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~Stokes' theorem: | (5. 77

PyTorch implementation: https://github.com/moellenh/flatgan
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