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Motivation

Latent concepts often induce an orientation of the data.

Tangent vectors to the “data manifold”:
▸ Stroke thickness or shear of MNIST digit.
▸ Camera position, lighting/material in a 3D scene.
▸ Arrow of time (videos, time-series data, ...)

X ⊂ R28⋅28

Contributions:
▸ We propose the novel perspective to represent oriented data with k-currents from

geometric measure theory.
▸ Using this viewpoint within the context of GANs, we learn a generative model

which behaves equivariantly to speci�ed tangent vectors.

1/12 Simard et al. 1992, 1998; Rifai et al. 2011
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An invitation to geometric measure theory (GMT)

▸ Di�erential geometry, generalized through measure theory to deal with surfaces
that are not necessarily smooth.

▸ k-currents ≈ generalized (possibly quite irregular) oriented k-dimensional surfaces
in d-dimensional space.

▸ The class of currents we consider form a linear space. It includes oriented
k-dimensional surfaces as elements.

2/12 Morgan 2016, Krantz & Parks 2008, Federer 1969
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Generalizing Wasserstein GANs to k-currents

Fλ(gθ ♯S, T)

gθ ∶ Z → X

Z

S

X

gθ ♯S

X

T

▸ T and S are 1-currents representing the data and the (partially oriented) latents.

▸ Pushforward operator gθ ♯, yields transformed current gθ ♯S.
▸ We propose to use the 
atmetric Fλ as a distance between g♯S and T .
▸ For k = 0 the 
at metric is closely related to the Wasserstein−1 distance and positive

0-currents with unit mass are probability distributions.

3/12 Inspired by the optimal transport perspective on GANs: Bottou et al. 2017, Genevay et al. 2017
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k-dimensional orientation in d-dimensional space

▸ Simple k-vectors v = v1 ∧⋯ ∧ vk ∈ ΛkRd describe oriented k-dimensional subspaces
together with an area in Rd:

v1 ∧ v2

v1
v2

−v1
−v2

−v1 ∧ −v2 1
2v1 ∧ 2v2

2v2

1
2v1

v2 ∧ v1

v1
v2

▸ The set of simple k-vectors forms a nonconvex cone in the vector space ΛkRd.
▸ For v = v1 ∧⋯ ∧ vk ,w = w1 ∧⋯ ∧wk :

⟨v,w⟩ = det(V⊺W), ∣v∣ =
√

⟨v, v⟩.

4/12 Graßmann 1844
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Oriented manifolds, di�erential forms and currents
▸ Orientation of a k-dimensional manifoldM: continuous simple k-vector map
τM ∶ M → ΛkRd, ∣τM(z)∣ = 1 and TzM “spanned” by τM(z)

▸ Di�erential form: k-covector �eld ω ∶ Rd → ΛkRd

▸ Integration of a k-form over an oriented k-dimensional manifold:

∫
M

ω ∶= ∫
M

⟨ω(z), τM(z)⟩dHk(z) = JMK(ω)

▸ JMK is a k-current. In general, they are continuous linear functionals acting on
compactly supported smooth k-forms

2-current discrete 2-current discrete 0-current

5/12
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Towards a distance between k-currents

▸ Mass of a k-current:M(T) = sup
∥ω∥∗≤1 T(ω)

▸ The boundary operator ∂maps a k-current to a (k − 1)-current: ∂T(ω) = T(dω)
▸ Stokes’ theorem:

∫
∂M

ω = ∫
M

dω.

▸ Normal currents T ∈ Nk,X (Rd): Finite mass and boundary massM(T) +M(∂T) < ∞
▸ A geometric view on the Wasserstein−1 distance:

W1(S, T) = min∂B=S−T M(B). Example: S = δx , T = δy :

x

y
B

∂B = δx − δy
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The 
at metric

Given two normal k-currents S ∈ Nk,X (Rd), T ∈ Nk,X (Rd) the 
at metric as de�ned as

Fλ(S, T) = min
S−T=∂B+A

M(B) + λM(A) = sup
∥ω∥∗≤λ
∥dω∥∗≤1

(S − T)(ω).

B

S

T

∂B
A = S − T

−∂B

Federer & Fleming 1960: The 
at metric metrizes the weak∗ convergence on normal
currents with uniformly bounded mass and boundary mass.

7/12 Whitney 1957, Federer & Fleming 1960
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Flat metric minimization: our theoretical result

Fλ(gθ ♯S, T)

gθ ∶ Z → X

Z

S

X

gθ ♯S

X

T

min
θ∈Θ

Fλ(gθ ♯S, T)

Assumptions:
▸ Normal currents S ∈ Nk,Z(Rl), T ∈ Nk,X (Rd).
▸ g ∶ Z ×Θ → X smooth in z with uniformly bounded derivative, loc. Lipschitz in θ.
▸ Parameter space Θ is compact.

Proposition. The map θ ↦ Fλ(gθ ♯S, T) is Lipschitz continuous.

8/12
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FlatGAN formulation and implementation

Fλ(gθ ♯S, T)

gθ ∶ Z → X

Z

S

X

gθ ♯S

X

T

min
θ∈Θ

Fλ(gθ ♯S, T)

sup
∥ω∥∗≤λ
∥dω∥∗≤1

(gθ ♯S − T)(ω)gθ ♯S(ω) − T(ω)S(gθ♯ω) − T(ω)

T = 1
N

N

∑
i=1
δxi ∧ (Ti,1 ∧⋯ ∧ Ti,k), S = µ ∧ (e1 ∧⋯ ∧ ek)

Ez∼µ [⟨ω ○ gθ , (∇zgθ ⋅ e1) ∧⋯ ∧ (∇zgθ ⋅ ek)⟩] −
1
N

N

∑
i=1

⟨ω(xi), Ti,1 ∧⋯ ∧ Ti,k⟩

▸ Implement ω ∶ Rd → ΛkRd and gθ ∶ Z → X with deep nets
▸ Soft penalty for ∥ω(x)∥∗ ≤ λ, ∥dω(x)∥∗ ≤ 1 (similar to WGAN-GP)
▸ Compute∇zgθ ⋅ ei with two calls to autograd (rop), ⟨⋅, ⋅⟩ by k × k-determinant
▸ Train model by alternating stochastic gradient ascent/descent
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T = 1
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N
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i=1
δxi ∧ (Ti,1 ∧⋯ ∧ Ti,k), S = µ ∧ (e1 ∧⋯ ∧ ek)

Ez∼µ [⟨ω ○ gθ , (∇zgθ ⋅ e1) ∧⋯ ∧ (∇zgθ ⋅ ek)⟩] −
1
N

N

∑
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⟨ω(xi), Ti,1 ∧⋯ ∧ Ti,k⟩

▸ Implement ω ∶ Rd → ΛkRd and gθ ∶ Z → X with deep nets
▸ Soft penalty for ∥ω(x)∥∗ ≤ λ, ∥dω(x)∥∗ ≤ 1 (similar to WGAN-GP)
▸ Compute∇zgθ ⋅ ei with two calls to autograd (rop), ⟨⋅, ⋅⟩ by k × k-determinant
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Illustration on a 2D toy data set (5 points on a circle)

data T it. 250 it. 500 it. 1000 it. 2000

k
=
0

k
=
1
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Learning equivariant latent representations
MNIST, k = 2

varying z1 (rotation) varying z2 (stroke width)

smallNORB, k = 3

varying z1 (lighting)

varying z2 (elevation)

varying z3 (azimuth)

tinyvideos, k = 1

varying z1 (time)
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See you at our poster, Paci�c Ballroom #16, 6:30 tonight!
Flat Metric Minimization with Applications in Generative Modeling

Thomas Möllenhoff Daniel Cremers Technical University of Munich

REPRESENTING DATA WITH NORMAL CURRENTS

Contribution: We propose to view (partially) oriented data as a k-current.

Fλ(gθ]S,T )

gθ : Z →X

Z

S

X

gθ]S

X

T

Intuitively, k-currents form a linear space that includes k-dimensional oriented man-
ifolds as elements. The vector space of normal currents Nk,X (Rd) consists of cur-
rents T with finite volume and finite volume of their boundary: M(T ) +M(∂T ) <∞.

THE FLAT METRIC

Fλ(S,T ) = min
S−T=∂B+A

M(B) +λM(A) = sup
‖ω‖∗≤λ
‖dω‖∗≤1

S(ω)− T (ω)

For 0-currents: It is related to the Wasserstein−1 distance.

x

M

x

W1

x

Fλ
x

y
B

Fλ(δx,δy) = min{λ,‖x − y‖}

∂B = δx − δy

The intuition for 1-currents:

B
S

T

∂B
A = S − T

−∂B

THEORETICAL RESULTS

Federer & Fleming 1960. The flat metric metrizes the weak∗ convergence on normal
currents with uniformly bounded mass and boundary mass:

Fλ(T ,Ti)→ 0 if and only if Ti
∗
⇀T , i.e., Ti(w)→ T (w), for all ω ∈ C∞c (Rd;ΛkRd).

Proposition. Let S ∈ Nk,Z,(Rl), T ∈ Nk,X (Rd) be normal currents. Assume gθ : Z →
X is smooth in z with uniformly bounded derivative and locally Lipschitz in θ. Then,
the map θ 7→ Fλ(gθ]S,T ) is Lipschitz continuous on any compact parameter set Θ.

Presented at the International Conference on Machine Learning (ICML), Los Angeles, 2019.

FLATGAN: LEARNING EQUIVARIANT REPRESENTATIONS

S = µ∧ (e1∧ . . .∧ ek) T = 1
N

∑N
i=1δxi ∧ Ti

min
θ∈Θ

{
Fλ(gθ]S,T ) = sup

‖ω‖∗≤λ
‖dω‖∗≤1

− 1
N

N∑

i=1

〈ω(xi),Ti〉

+Ez∼µ [〈ω ◦ gθ, (∇zgθ · e1)∧ . . .∧ (∇zgθ · ek)〉]
}
.

Solving the above optimization problem yields a generator gθ which behaves equiv-
ariantly to the specified tangent vectors.

Illustration on a simple dataset in 2D:

T ∈N0,X (Rd) it. 500 it. 1000 it. 2000 T ∈N1,X (Rd) it. 500 it. 1000 it. 2000

tinyvideos, k = 1:

varying z1 (time)

MNIST, k = 2:

varying z1 (rotation)

varying z2 (stroke width)

smallNORB, k = 3:

varying lighting (z1)

varying elevation (z2)

varying azimuth (z3)

GEOMETRIC MEASURE THEORY CHEAT SHEET & REFERENCES
• k-vectors and k-covectors. ΛkRd is a vector space in which some of the elements describe oriented, k-dimensional
planes in Rd. These are called simple k-vectors: v1∧ . . .∧ vk. The dual space (k-covectors) is ΛkRd.

• If v and w are simple, then we have 〈v1∧ . . .∧ vk,w1∧ . . .∧wk〉 = det(V >W ).
• A differential form is a k-covector field ω : Rd→ΛkRd. k-currents are the dual space of smooth, compact k-forms.
• ‖v‖ = sup‖w‖∗≤1〈v,w〉. Area of the k-dim. parallelotope spanned by the {vi} if v = v1∧ . . .∧ vk.
• The mass M(T ) = sup‖ω‖∗≤1T (w) is the k-dimensional volume of the k-current T .
• Boundary: ∂T (ω) = T (dω), where d is the exterior derivative (in R3: grad→ curl→ div)
• Orientation: Continuous k-vector map τM :M→ΛkRd, τM(z) is simple with unit norm, spanning TzM for all z ∈M.
• Stokes’ theorem:

∫
M 〈dω,τM〉dHk =

∫
∂M 〈ω,τ∂M〉dHk−1, it follows that ∂~M� = ~∂M�.

• Pullback: 〈g]ω,v1∧ . . .∧ vk〉 = 〈ω ◦ g,∇g · v1∧ . . .∧∇g · vk〉, pushforward: g]T (ω) = T (g]ω).

[1] H. Federer and W. H Fleming. Normal and integral currents. Annals of Mathematics, pages 458–520, 1960.
[2] H. Federer. Geometric Measure Theory. Springer, 1969.
[3] F. Morgan. Geometric Measure Theory: A Beginner’s Guide. Academic Press, 5th edition, 2016.

PyTorch implementation: https://github.com/moellenh/flatgan
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