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Generative Adversarial Networks (GANs): Recent Progress
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Conditioning reduces the diverse generation problem to a per-class problem
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Conditioning reduces the diverse generation problem to a per-class problem
Unsupervised models are considerably less powerful



Generative Adversarial Networks (GANs): Recent Progress
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BigGAN (Brock, Donahue, Simonyan 2019) SS-GAN (Chen et al. 2019)
class-conditional unsupervised

This work: How to close the gap between conditional and unsupervised GANs?



Proposed methods: Overview

e Replace ground-truth labels with synthetic/inferred labels
=> No changes in the GAN architecture required

e Infer labels for the real data using self-supervised and
semi-supervised learning techniques



Proposed methods: Pre-training
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1. Learn a semantic representation F of the data using
self-supervision by rotation prediction (Gidaris et al. 2018)

2. Clustering or semi-supervised learning on the representation F

3. Train GAN with inferred labels



Proposed methods: Co-training
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e Semi-supervised classification head on discriminator



Improve pre- and co-training methods

y o
f G = |_>
# N
R \
~ Cy/f
D P
Ve , A ‘\
7’ |

Yr Yt

e Rotation-self supervision during GAN training (Chen et al. 2019)



Results
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e Clustering (SS) is unsupervised SOTA (FID 22.0)
e S2GAN (20%) and S3GAN (10%) match BigGAN (100%)
e S3GAN (20%) outperforms BigGAN (100%) (SOTA)




Samples: BigGAN (our implementation) vs proposed

BigGAN (100%)

S°GAN (10%)
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S3GAN (10%)



Code, pretrained models and Colabs:

github.com/google/compare_gan

Check out our poster #13 tonight 6:30-9:00 pm!



