A Deep Reinforcement Learning
Perspective on Internet Congestion
Control

by Nathan Jay*, Noga H. Rotman¥*, Brighten
Godfrey, Michael Schapira, and Aviv Tamar

*Equal contribution

Internet Congestion Control

The Internet
(maybe?)
End Host

o
———

Internet Congestion Control

The Internet
Data (maybe?)

End Host
.))) I

o
———

Internet Congestion Control

The Internet
(maybe?)
End Host

El)

Internet Congestion Control

The Internet
(maybe?) Data

End Host I Server

— =
t=5.1

Internet Congestion Control

The Internet
(maybe?)
End Host

El)

Internet Congestion Control

The Internet
(maybe?)

End Host

- /\
/I

Internet Congestion Control

The Internet
(maybe?)
End Host

El)

t=10.2

Ack

Internet Congestion Control

The Internet
Data (maybe?) Data

g .

t=10.2

Ack

Server
—

End Host

El)

Internet Congestion Control

Latency Trace of Internet Path*

Latency

Latency

Time

*from pantheon.stanford.edu

Internet Congestion Control

Latency Trace of Internet Path*

Latency

Latency

Time

*from pantheon.stanford.edu

Internet Congestion Control

Latency Trace of Internet Path*

Latency

Latency

v

Time

*from pantheon.stanford.edu

Internet Congestion Control

Underlying Complexity:

Latency Trace of Internet Path*

> | e Enormous, dynamic network

S |

©

-

>

O

c

2 :

© e Massive agent churn

~80,000 agents/second

(111 Tube

Time
e Very little information

*from pantheon.stanford.edu

Revisiting Congestion Control

Congestion Control Timeline

I I I
I I I
1988 Flavors of TCP Congestion Control 2016 2019
(Tahoe, Reno, Cubic, lllinois, Vegas, ...)
e Same network model
e Same action space
e Slightly different control algorithms

Revisiting Congestion Control

Congestion Control Timeline

I I I
1988 Flavors of TCP Congestion Control 2016 2019
(Tahoe, Reno, Cubic, lllinois, Vegas, ...)
e Same network model
e Same action space
e Slightly different control algorithms

Introduction of QUIC, replaces
significant amount of Google traffic.

e New models
e New action space (packet pacing added to Linux)
e Novel control algorithms and research (BBR, Copa, PCC)

Reward-based architecture: PCC

Observations

Performance
Statistics

Rates
Input Features:
ﬁ 1
1. Send Ratio
—l N etWO rk 2. Lat. Ratio
— 3. Lat.

Inflation

Reward-based architecture: PCC

Observations Actions

I
Performance ;
I
I

Statisti .
_ tatistics /CapaCIty

Rates
Input Features: -
ﬁ 1
1. Send Ratio .
—l N etWO rk 2. Lat. Ratio
— 3. Lat. .

Inflation

Utility
\‘\.

Agent Architecture

Input Features: Factor 0: Old Rat 1
i > 0: +
1. Send Ratio { 3| aver NN a — NewRate=—% ate x (1 +wa)
2. Lat. Ratio a <0:Old Rate / (1 - wa)
3. Lat.
. Inflation

AN

History Length

Agent Architecture

Input Features: Factor 0: Old Rat 1
i > 0: +
1. Send Ratio { 3| aver NN a — NewRate=—% ate x (1 +wa)
2. Lat. Ratio a <0:Old Rate / (1 - wa)
3. Lat.
. Inflation

AN

History Length

Training/Testing Environment

Training Environment:

e Simulated network
e Each episode chooses link
parameters from a range:

Capacity | Latency | Loss Queue

1-6mbps 50 - 0-5% | 1-~3000pkt
500ms

e Standard gym at
github.com/PCCProject/PCC-RL

Training/Testing Environment

Training Environment: Testing Environment:
e Simulated network e Real packets in Linux kernel
e Each episode chooses link network emulation
parameters from a range: e Much wider testing range:
Capacity | Latency | Loss Queue Capacity Latency | Loss Queue
1 - 6mbps | 50 - 0-5% | 1-~3000pkt 1-128mbps | 1 - 0-20% | 1-10000pkt
500ms 512ms

e Standard gym at
github.com/PCCProject/PCC-RL

State-of-the-art Results

Emulated Dynamic Link Performance

24 A‘- Optimal

Test Description:

e Emulated network, with real
Linux kernel noise
e Time-varying link

[N}
(W]

D
(o

—_
co

—_
D

Average Throughput (mbps)

30 40 20 60 70 80
Average Latency (ms)

State-of-the-art Results

Test Description:

e Emulated network, with real
Linux kernel noise
e Time-varying link

Emulated Dynamic Link Performance

24

[N}
(W]

—_
co

—_
D

Average Throughput (mbps)

_4* Optimal
Uptimal

D
(o

-
»
*T e

* TCP Cubic
¢ BBR
!

30

40

20 60
Average Latency (ms)

70

30

State-of-the-art Results

Test Description:

e Emulated network, with real
Linux kernel noise
e Time-varying link

Emulated Dynamic Link Performance

24 1

[N}
(W]

—_
co

—_
D

Average Throughput (mbps)

D
(o

QOptimal
Uptimal
*
* * x ¥
*
¢ ¢ ¢ **
L ’. [* %
> ¢
» +
L 2
L 3
S 1 ¥ N
>
‘ .’ + PCC Vivace
» Copa
€ RemyCC
..’0 4 BBR
Y * TCP Cubic
| I
30 40 50 60 70 30

Average Latency (ms)

State-of-the-art Results

Test Description:

e Emulated network, with real
Linux kernel noise
e Time-varying link

Emulated Dynamic Link Performance

24 1

[N}
(W]

—_
co

—_
D

Average Throughput (mbps)

D
(o

QOptimal
Uptimal
*
* * x ¥
*
. . R L **
L ’. [* %
> ¢
» s
L 2
L 3
> r 1 4 .
»> . Aurora
‘ 'Y - + PCC Vivace
» Copa
€ RemyCC
.o % 4 BBR
Y * TCP Cubic
| I
30 40 50 60 70 30

Average Latency (ms)

State-of-the-art Results

Test Description: "

e Emulated network, with real
Linux kernel noise
e Time-varying link

[N}
(W]

—_
co

Avdrage Throughput (mbps)
bo
()

—_
D

Aurora is on the Pareto front of
state-of-the-art algorithms

Emulated Dynamic Link Performance

Average Latency (ms)

_4* Optimal
Uptimal
*
* * x ¥
*
. ¢ ¢ ¢ **
. ’. [L g
> - ¢
M r A0
»> . Aurora
% ® h g # PCC Vivace
» Copa
€ RemyCC
.o % 4 BBR
‘ 4« TCP Cubic
| I
30 40 50 60 70 80

Exciting Directions

e Multi-agent scenarios:
o Cooperative
o Selfish

e Online training:
o Few-shot training
o Meta-learning

e Multi-objective Learning:
o File transfer
o Live video

By The Opte Project - Originally from the English Wikipedia; description page is/was here., CC BY 2.5,
https://commons.wikimedia.org/w/index.php?curid=1538544

Poster #45
6:30pm - 9:00pm
Pacific Ballroom

Code available at
github.com/PCCProject/PCC-RL

