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Internet Congestion Control

Underlying Complexity:

Latency Trace of Internet Path*
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Revisiting Congestion Control

Congestion Control Timeline

I I I
1988 Flavors of TCP Congestion Control 2016 2019
(Tahoe, Reno, Cubic, lllinois, Vegas, ...)
e Same network model
e Same action space
e Slightly different control algorithms

Introduction of QUIC, replaces
significant amount of Google traffic.

e New models
e New action space (packet pacing added to Linux)
e Novel control algorithms and research (BBR, Copa, PCC)
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Training/Testing Environment

Training Environment:

e Simulated network
e Each episode chooses link
parameters from a range:

Capacity | Latency | Loss Queue

1-6mbps 50 - 0-5% | 1-~3000pkt
500ms

e Standard gym at
github.com/PCCProject/PCC-RL



Training/Testing Environment

Training Environment: Testing Environment:
e Simulated network e Real packets in Linux kernel
e Each episode chooses link network emulation
parameters from a range: e Much wider testing range:
Capacity | Latency | Loss Queue Capacity Latency | Loss Queue
1 - 6mbps | 50 - 0-5% | 1-~3000pkt 1-128mbps | 1 - 0-20% | 1-10000pkt
500ms 512ms

e Standard gym at
github.com/PCCProject/PCC-RL
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State-of-the-art Results

Test Description: "

e Emulated network, with real
Linux kernel noise
e Time-varying link
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Exciting Directions

e Multi-agent scenarios:
o Cooperative
o Selfish

e Online training:
o Few-shot training
o Meta-learning

e Multi-objective Learning:
o File transfer
o Live video
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Code available at
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