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Fast & Efficient Model-Free Reinforcement Learning
Trajectory-Based Off-Policy Deep Reinforcement Learning
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How far can we push “model-free” RL?
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[1] Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. 1992
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Problems with Policy Gradient Methods
Trajectory-Based Off-Policy Deep Reinforcement Learning
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Data inefficiency
 On-policy samples required
 No sample reuse

Problems

Gradient variance
 Stochastic policy
 Stochastic environment

Exploration vs. exploitation
 Step size control
 Policy (relative) entropy
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Deep Deterministic Off-Policy Gradients (DD-OPG)
Trajectory-Based Off-Policy Deep Reinforcement Learning
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Core concepts in DD-OPG
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Global Return
Distribution Estimator

 Incorporation of all data (off-policy)
 Backtracking to good solutions

Core concepts in DD-OPG
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Global Return
Distribution Estimator

 Incorporation of all data (off-policy)
 Backtracking to good solutions

Implementation:
 Importance sampling with

empirical mixture distribution[1]

[1] Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.
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Global Return
Distribution Estimator

 Incorporation of all data (off-policy)
 Backtracking to good solutions

Implementation:
 Importance sampling with

empirical mixture distribution[2]

 Reduced rollout stochasticity
 Richer behaviors with parameter

space exploration[2]

[1] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz,M. Parameter space noise for exploration. ICLR 2018.
[2] Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.

Deterministic Policy

Core concepts in DD-OPG
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Implementation:
 Model parameter Σ
 Length scale in action space

[1] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz,M. Parameter space noise for exploration. ICLR 2018.
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 Policy search leveraging
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[1] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz,M. Parameter space noise for exploration. ICLR 2018.
[2] Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.

Deterministic Policy Distributional
Policy Search
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 Incorporation of all data (off-policy)
 Backtracking to good solutions

Implementation:
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 Reduced rollout stochasticity
 Richer behaviors with parameter

space exploration[1]

Implementation:
 Model parameter Σ
 Length scale in action space

 Policy search leveraging
lower bound

Implementation:
 Estimation of empirical

sample size and variance

[1] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz,M. Parameter space noise for exploration. ICLR 2018.
[2] Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.
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Return Distribution Estimator
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[1] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,P. Trust region policy optimization. ICML 2015.
[2] Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. Policy optimization via importance sampling. NeurIPS 2018.
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[1] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,P. Trust region policy optimization. ICML 2015.
[2] Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. Policy optimization via importance sampling. NeurIPS 2018.
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Algorithmic Choices
Trajectory-Based Off-Policy Deep Reinforcement Learning
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DD-OPG REINFORCE TRPO PPO

Memory 
selection

All available trajectories
Prioritized trajectory replay Only on-policy samples from current batch

Exploration Parameter space Action space

Objective 𝓛𝓛 𝜽𝜽 Expected return
lower bound

Expected
return

Expected return 
with KL constraint

Expected return 
(lower bound)

Optimization Fully optimized with 
backtracking

One
gradient 

step
Locally optimized
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Experimental Results – From REINFORCE to DD-OPG
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Experimental Results – Benchmark Results
Trajectory-Based Off-Policy Deep Reinforcement Learning
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Cartpole MountainCar Swimmer

DD-OPG REINFORCE TRPO PPO

System interactions (× 105)

 GARAGE: continuous control environments
 Gaussian MLP policy (16, 16)



Bosch Center for Artificial Intelligence | 2019-06-12
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Conclusion
Trajectory-Based Off-Policy Deep Reinforcement Learning
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Novel off-policy policy gradient methods

 Enables data-efficient sample reuse

 Incorporation of low-noise deterministic rollouts

 Lengthscale in action space as only model assumption

 Promising benchmark results

DD-OPG (red) benchmark results
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