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Reinforcement Learning

Reinforcement learning (RL) studies how to use data from interactions with the
environment to learn an optimal policy:

Policy: mg(als):S x A~ [0,1]
S |
ﬁ estimate return Rewa rd maX](Q) = max IET~7T z yt T(St, at)
I 0 0 9
Optimization: t

T (St' Aty o) St+Ny at+N)

generate samples
(i.e. run the policy)
; improve the policy

Figure from Sergey Levine

Policy gradient-based optimization with no
prior information:

VoI (6) = Ernn, [Vologms(r)Q7(7)]

N T
Williams, 1992; Sutton et al. 1999 ~ E E (Vologma(sit,a;+)Q7 (Sit,ait)]
Baxter and Bartlett, 2000 =1 =1

Greensmith et al. 2004



Variance in Reinforcement Learning

episode_reward/test

RL methods suffer from high variance in learning =

(Islam et al. 2017; Henderson et al. 2018) -300 Inverted pendulum
10 random seeds
-500
Allows us to optimize policy with no prior information 700
(only sampled trajectories from interactions) 2000k 60.00K 1000k 1400k 180.0K

Figure from Alex Irpan

Greensmith et al. 2004, Zhao et al. 2012
Zhao et al. 2015; Thodoroff et al. 2018



Variance in Reinforcement Learning
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Howeuver, is this necessary or even desirable?

See1 = f(se) + g(se)ay Nominal controller is stable
but based on:

> a = Uprior ()  Error prone model

LQR Controller * Linearized dynamics
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Figure from Kris Hauser

Greensmith et al. 2004, Zhao et al. 2012
Zhao et al. 2015; Thodoroff et al. 2018



Regularization with a Control Prior

""""""""""" I A is a reqularization

| | . .
Combine control prior, Uyyior(S), ! B A ! parameter weighting
with learned controller, ug (s), | uk(s) ug, (s) + 1r )\UPMOT(S) . the prior vs. the
| : learned controller
sampled from g, (als) e L _ I
g, learned in same manner with samples drawn from new distribution (e.g. VyJ(0) = E, {V@ log m)(r)Q"T(T)} )

Under the assumption of Gaussian exploration noise
(i.e. mg(als) has Gaussian distribution):

Up(s) = argmin ||u(s) — g,

u

‘1 )\| |'U.(S) s 'U.p-r-'z'o'r (5) | |E VS = 15'
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£

Johannink et al. 2018; Silver et al. 2019

which can be equivalently expressed as the constrained
optimization problem,

uy(s) = arg min
u z

s.t. ||u(s) = Uprior(8)||x < B(A) Vs €S,

u(s) — ug,




Interpretation of the Prior
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Theorem 1. Using the mixed policy above, variance from

each policy gradient step is reduced by factor (1:/1)2 :

However, this may introduce bias into the policy

1
DTV (?ka ﬂ_opt) > DTV(Wopta TFp'rior) . 1+ )\DTV(WBk ; W-p-r'ia'r‘)
A
DTV(W};, Wo-pt) < mDTV(ﬂ-opt: 7T'p'rior) as k — oo

where Drpy (-, -) represents the total variation distance
between two policies.



Interpretation of the Prior
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! 1 \ : High Regularization Low Regularization

I k:( ) — 01 ( ) + prior (S) 1 —_ Coqtrol Priolr Traj. — Control Prior Traj.
I 1+ A 1+ A I — Optimal Trajectory — Optimal Trajectory
| | o

--- Explorable Set S, Explorable Set s,

Theorem 1. Using the mixed policy above, variance from

each policy gradient step is reduced by factor (1:/1)2 :

State Space, S State Space, S
However, this may introduce bias into the policy @ )
1
Ty Topt ) = = T, s Torior . . . :
Drv 7k, mopt) 2 Drv (Topt, Tprior) 1+ )\DT" (T6r» Tprior) Strong regularization: The control prior heavily constrains

A exploration. Stabilize to the red
= 7DTV (ﬂ-opt: 7T'p'rior) as k — oo . .
14+ A trajectory, but miss green one.
Weak regularization: Greater room for exploration, but
may not stabilize around red
trajectory.

where Drpy (-, -) represents the total variation distance
between two policies.



Stability Properties from the Prior
Regularization allows us to “capture” stability properties from a robust control prior

Theorem 2. Assume a stabilizing H ., control prior within the set C for the dynamical system
(14). Then asymptotic stability and forward invariance of the set S¢; € C

1 _
. (Tm(gf ) ( ”P”_( -

2 _|PBy|sC ) s € C}.

Sst 1 {s € R":

1+)\

is guaranteed under the regularized policy for all s € C.
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Results

Improvement over Control Prior Reward-Variance
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Control Regularization helps by providing:
e Reduced variance See Poster for similar results on CartPole domain

* Higher rewards

* Faster learning Code at: https://github.com/rcheng805/CORE-RL
* Potential safety guarantees Poster Number: 42

However, high regularization also leads to potential bias



