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Stochastic Environments: 3D Navigation
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Position Control:

1. Position

2. Direction

3. Gripper Angle

4. Gripper Distance
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Summary: Exploration via Disagreement

- Similar to state-of-the-art in deterministic envs
(Atari games)

- Does not get stuck in stochastic scenarios
(Stochastic Atari; Unity-TV)

- Differentiable reformulation for real robots
(Sawyer Robot)
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