Self-Supervised Exploration via Disagreement

Deepak Pathak*
UC Berkeley

Dhiraj Gandhi* CMU

Abhinav Gupta CMU, FAIR

ICML 2019

^{*} equal contribution

- Schmidhuber, Jurgen. "A possibility for implementing curiosity and boredom in model building neural controllers", 1991.
- Schmidhuber, Jurgen. "Formal theory of creativity, fun, and intrinsic motivation (1990–2010)", 2010.
- Oudeyer, P.-Y. and Kaplan, F. What is intrinsic motivation? a typology of computational approaches. Frontiers in neurorobotics, 2009.
- Poupart *et.al.* "An analytic solution to discrete bayesian reinforcement learning". ICML, 2006.
- Lopes *et.al.* "Exploration in model-based reinforcement learning by empirically estimating learning progress". NIPS, 2012.
- Bellemare *et.al.* "Unifying count-based exploration and intrinsic motivation". NIPS, 2016.

- Mohamed *et.al.* "Variational information maximisation for intrinsically motivated reinforcement learning". NIPS, 2015.
- Houthooft *et.al.* "VIME: Variational information maximizing exploration". NIPS, 2016.
- Gregor *et.al.* "Variational intrinsic control". ICLR Workshop, 2017.
- Pathak et.al. "Curiosity-driven Exploration by Selfsupervised Exploration". ICML 2017
- Ostrovski *et.al.* "Count-based exploration with neural density models". ICML, 2017.
- Burda*, Edwards*, Pathak* et.al. "Large-Scale Study of Curiosity-driven Learning". ICLR 2019
- Eysenbach et al. "Diversity is all you need: Learn skills without a reward function". ICLR 2019.
- Savinov et al. "Episodic curiosity through reachability". ICLR 2019.

- Schmidhuber, Jurgen. "A possibility for implementing curiosity and boredom in model building neural controllers", 1991.
- Schmidhuber, Jurgen. "Formal theory of creativity, fun, and intrinsic motivation (1990–2010)", 2010.
- Oudeyer, P.-Y. and Kaplan, F. What is intrinsic motivation? a typology of computational approaches. Frontiers in neurorobotics, 2009.
- Poupart *et.al.* "An analytic solution to discrete bayesian reinforcement learning". ICML, 2006.
- Lopes *et.al.* "Exploration in model-based reinforcement learning by empirically estimating learning progress". NIPS, 2012.
- Bellemare *et.al.* "Unifying count-based exploration and intrinsic motivation". NIPS, 2016.

- Mohamed *et.al.* "Variational information maximisation for intrinsically motivated reinforcement learning". NIPS, 2015.
- Houthooft *et.al.* "VIME: Variational information maximizing exploration". NIPS, 2016.
- Gregor *et.al.* "Variational intrinsic control". ICLR Workshop, 2017.
- Pathak et.al. "Curiosity-driven Exploration by Selfsupervised Exploration". ICML 2017
- Ostrovski et.al. "Count-based exploration with neural density models". ICML, 2017.
- Burda*, Edwards*, Pathak* et.al. "Large-Scale
 Study of Curiosity-driven Learning". ICLR 2019
- Eysenbach et al. "Diversity is all you need: Learn skills without a reward function". ICLR 2019.
- Savinov et al. "Episodic curiosity through reachability". ICLR 2019.

• Bellemare *et.al.* "Unifying count-based exploration and intrinsic motivation". NIPS, 2016.

- Mohamed et.al. "Variational information maximisation for intrinsically motivated reinforcement learning". NIPS, 2015.
- Houthooft *et.al.* "VIME: Variational information maximizing exploration". NIPS, 2016.
- Gregor *et.al.* "Variational intrinsic control". ICLR Workshop, 2017.
- Pathak et.al. "Curiosity-driven Exploration by Selfsupervised Exploration". ICML 2017
- Ostrovski et.al. "Count-based exploration with neural density models". ICML, 2017.
- Burda*, Edwards*, Pathak* et.al. "Large-Scale
 Study of Curiosity-driven Learning". ICLR 2019
- Eysenbach et al. "Diversity is all you need: Learn skills without a reward function". ICLR 2019.
- Savinov et al. "Episodic curiosity through reachability". ICLR 2019.

- Schmidhuber, Jurgen. "A possibility for implementing curiosity and boredom in model building neural controllers", 1991.
- Schmidhuber, Jurgen. "Formal theory of creativity, fun, and intrinsic motivation (1990-2010)", 2012
- Sample Inefficient
 [millions of samples] Oudever, P.-Y. and Kaplan, F. What is intrig motivation? a typology of computation approaches. Frontiers in neuroro
- Poupart et.al. "An analytic so bayesian reinforcement
- Lopes et.al. "Explo reinforcement learning progr
- based exploration Bellemare et.al. and intrinsic moti 2016.

imating

Mohamed formation otivated maxim 015.

tional information '. NIPS, 2016.

et.al. "Curiosity-driven Exploration by Selfapervised Exploration". ICML 2017

ational intrinsic control". ICLR

- Ostrovski et.al. "Count-based exploration with neural density models". ICML, 2017.
- Burda*, Edwards*, Pathak* et.al. "Large-Scale Study of Curiosity-driven Learning". ICLR 2019
- Eysenbach et al. "Diversity is all you need: Learn skills without a reward function". ICLR 2019.
- Savinov et al. "Episodic curiosity through reachability". ICLR 2019.

Real Robots

Real Robots

"Stuck" in Stochastic Envs

Simulation

Real Robots

"Stuck" in Stochastic Envs

Curiosity Exploration

w/ Noisy TV & Remote

[Burda*, Edwards*, Pathak* et. al. ICLR'19]

[Juliani et.al., ArXiv'19]

Why inefficient?

current image x_t

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

Prediction Model $f(x_t, a_t)$

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

Environment is "black-box" → hard optimization

$$r_t^i = \|\hat{x}_{t+1} - \mathbf{x}_{t+1}\|$$

Intrinsic Reward r_t^i predicted next image \hat{x}_{t+1} **Prediction Model** $f(x_t, a_t)$ action a_t current image x_t

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

[Pathak et al. ICML, 2017]

action $\boldsymbol{a_t}$

policy network $\pi_{\theta}(x_t)$

current image x_t

current image x_t

 $min \quad ||x_{t+1} - \hat{x}_{t+1}^1|| \quad ||x_{t+1} - \hat{x}_{t+1}^2|| \qquad ||x_{t+1} - \hat{x}_{t+1}^n||$ \hat{x}_{t+1}^2 f_1 f_2 f_n x_t a_t x_t a_t x_t a_t

Deterministic Environments

performs as well as state-of-the-art methods

Deterministic Environments

performs as well as state-of-the-art methods

Reward (not for training)

Deterministic Environments

performs as well as state-of-the-art methods

Deterministic Environments

performs as well as state-of-the-art methods

Stochastic Environments

Stochastic Environments

Every model's goes to mean → variance drops → unstuck

Stochastic Environments: 3D Navigation

Every model's goes to mean \rightarrow variance drops \rightarrow unstuck

Number of Frames (in millions)

Stochastic Environments: 3D Navigation

Every model's goes to mean \rightarrow variance drops \rightarrow unstuck

$$\min_{\theta_1,\dots,\theta_k} \sum_{i=1}^{\kappa} \left\| f_{\theta_i} (x_t, \pi(x_t; \theta_P)) - x_{t+1} \right\|_2$$

$$\min_{\theta_{1},\dots,\theta_{k}} \sum_{i=1}^{k} \| f_{\theta_{i}}(x_{t},\pi(x_{t};\theta_{P})) - x_{t+1} \|_{2}$$

$$\max_{\theta_P} \sum_{i=1}^k \left\| f_{\theta_i} \left(x_t, \pi(x_t; \theta_P) \right) - \left(\frac{1}{k} \right) \sum_{j=1}^k f_{\theta_j} \left(x_t, \pi(x_t; \theta_P) \right) \right\|_2$$

Position Control:

- 1. Position
- 2. Direction
- 3. Gripper Angle
- 4. Gripper Distance

Pathak*, Gandhi*, Gupta. "Self-Supervised Exploration via Disagreement". ICML, 2019.

Pushing skill

Pushing skill

Picking skill

Pathak*, Gandhi*, Gupta. "Self-Supervised Exploration via Disagreement". ICML, 2019.

- Similar to state-of-the-art in deterministic envs (Atari games)

- Similar to state-of-the-art in deterministic envs (Atari games)
- Does not get stuck in stochastic scenarios (Stochastic Atari; Unity-TV)

- Similar to state-of-the-art in deterministic envs (Atari games)
- Does not get stuck in stochastic scenarios (Stochastic Atari; Unity-TV)
- Differentiable reformulation for real robots (Sawyer Robot)

Code Available

https://pathak22.github.io/exploration-by-disagreement/

Poster # 39 (today)

