

Imitating Latent Policies from Observation

Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, Charles L. Isbell Georgia Institute of Technology

Introduction

- Imitation from Observation enables learning from state sequences
- Typical approaches need extensive environment interactions
- Humans can learn policies just by watching

Given: Sequence of noisy expert observations

Assumption: Discrete actions with deterministic transitions

- z is defined as a latent action that caused a transition to occur
- z can imply a real action or some other type of transition

Action: Right Z = 1

Action: Right Z = 2

A latent policy is the probability of taking a latent action in some state

<u>ILPO</u>

- 1. Given sequence of observations, learn *latent* policy
- 2. Use a few environment steps to align actions

<u>ILPO</u>

- 1. Given sequence of observations, learn *latent* policy
- 2. Use a few environment steps to align actions

Latent policy network

<u>ILPO</u>

- 1. Given sequence of observations, learn *latent* policy
- 2. Use a few environment steps to align actions

Action remapping network

Experiments: Classic Control

- Access to expert observations only
- No reward function used in approach
- Comparison to Behavioral Cloning from Observation [1]

Experiments: CoinRun

(a) CoinRun easy

Experiments: CoinRun

(b) CoinRun hard

Thank You!

Room: Pacific Ballroom at 6:30pm (Today)!

Poster: #33