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Introduction

• Imitation from Observation enables learning from state sequences 
• Typical approaches need extensive environment interactions 
• Humans can learn policies just by watching 



Approach

Given: Sequence of noisy expert observations 

Assumption: Discrete actions with deterministic transitions  

• z is defined as a latent action that caused a transition to occur  

• z can imply a real action or some other type of transition  

• A latent policy is the probability of taking a latent action in some state 

Action: Right 
Z = 1 

Action: Right 
Z = 2 



Approach

1. Given sequence of observations, learn latent policy

2. Use a few environment steps to align actions

ILPO



Approach

Latent policy network

1. Given sequence of observations, learn latent policy

2. Use a few environment steps to align actions

ILPO
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Imitating Latent Policies from Observation

(a) Latent Policy Network

(b) Action Remapping Network

Figure 1: The latent policy network learns a latent policy, ⇡(z|s), and a forward dynamics model, G. The action remapping
network learns ⇡(a|st, z) to align the latent actions z with ground-truth actions a.

2017; Babes et al., 2011).

3. Approach

We now describe our approach, Imitating Latent Policies
from Observation (ILPO), where we train an agent to imitate
behaviors from expert state observations.

3.1. Problem formulation

We aim to use ILPO to solve problems specified through a
Markov Decision Process (MDP) <S,A,R, T> (Sutton &
Barto, 1998). Here, s 2 S denotes the states in the environ-
ment, at 2 A corresponds to actions, rt 2 R are the rewards
the agent receives in each state, and T (st, at, st+1) is the
transition model, which we assume is unknown. Reinforce-
ment learning approaches aim to learn policies ⇡(a|st) that
determine the probability of taking an action a in some state
st. We use imitation learning to directly learn the policy
and use the reward rt only for evaluation purposes.

We are given a set of expert demonstrations described
through noisy state observations {s⇤1 . . . s⇤n} 2 D. In our
approach, we will use these observations to predict a multi-
modal forward dynamics model. As such, noise is necessary
for ensuring that state transitions are properly modeled.

Given two consecutive observations {st, st+1}, we define
z as a latent action that caused this transition to occur. As
such, the action spaces that we consider are discrete with de-
terministic transitions. Because our problems are specified
through MDPs, we assume that the number of actions, |A|,
is known. Hence, we can define {z1 . . . z|A|} 2 Z latent
actions, where |Z| = |A| is used as an initial guess for the
number of latent actions. However, there may be more or
less types of transitions that appear in the demonstration
data. For example, if an agent has an action to move left
but always moves right, then the "left" transition will not
be observed. Or if the agent moves right and bumps into
a wall, this stationary transition may appear to be another

type of action. As such, we will empirically study the effect
of using latent actions when |Z| 6= |A|.

3.2. Step 1: Learning latent policies

In perhaps the most straightforward approach for imitation
learning, behavioral cloning, given expert states and actions
{s1, a1 . . . sn, an}, we can use supervised learning to ap-
proximate ⇡(a|st). That is, given a state st, this approach
predicts the probability of taking each action, i.e., the policy.
However, imitation by observation approaches do not have
access to expert actions. To address this, behavioral cloning
from observation (BCO) (Torabi et al., 2018) first learns
an inverse dynamics model f(a|st, st+1) by first collecting
samples in the agent’s environment. Then, the approach
uses this model to label the expert observations and learn
⇡(a|st). However learning dynamics models online can re-
quire a large amount of data, especially in high-dimensional
problems.

We make the observation that we do not need to know action
labels to make an initial hypothesis of the policy. Rather, our
approach aims learns a latent policy ⇡!(z|st) that estimates
the probability that a latent action z would be taken when
observing st. This process can be done offline and hence
more efficiently utilizes the demonstration data.

In order to learn this latent policy, we introduce a latent
policy network with two key components: a latent forward
dynamics model G that learns to predict bst+1, and a prior
over z given st, which gives us the latent policy, as shown in
figure 1. We then use a limited number of interactions with
the environment to learn an action-repmapping network that
efficiently associates the true actions the agent can take with
the latent policy identified by our learned model. These
methods are outlined in algorithm 1 and will be discussed in
the remainder of this section. Code is additionally provided
in the supplementary.

Finally, rather than operating directly on state inputs, we
use an embedding to encode the states. This is useful for



Approach

Action remapping network

1. Given sequence of observations, learn latent policy

2. Use a few environment steps to align actions

ILPO
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(a) Latent Policy Network

(b) Action Remapping Network

Figure 1: The latent policy network learns a latent policy, ⇡(z|s), and a forward dynamics model, G. The action remapping
network learns ⇡(a|st, z) to align the latent actions z with ground-truth actions a.

2017; Babes et al., 2011).

3. Approach

We now describe our approach, Imitating Latent Policies
from Observation (ILPO), where we train an agent to imitate
behaviors from expert state observations.

3.1. Problem formulation

We aim to use ILPO to solve problems specified through a
Markov Decision Process (MDP) <S,A,R, T> (Sutton &
Barto, 1998). Here, s 2 S denotes the states in the environ-
ment, at 2 A corresponds to actions, rt 2 R are the rewards
the agent receives in each state, and T (st, at, st+1) is the
transition model, which we assume is unknown. Reinforce-
ment learning approaches aim to learn policies ⇡(a|st) that
determine the probability of taking an action a in some state
st. We use imitation learning to directly learn the policy
and use the reward rt only for evaluation purposes.

We are given a set of expert demonstrations described
through noisy state observations {s⇤1 . . . s⇤n} 2 D. In our
approach, we will use these observations to predict a multi-
modal forward dynamics model. As such, noise is necessary
for ensuring that state transitions are properly modeled.

Given two consecutive observations {st, st+1}, we define
z as a latent action that caused this transition to occur. As
such, the action spaces that we consider are discrete with de-
terministic transitions. Because our problems are specified
through MDPs, we assume that the number of actions, |A|,
is known. Hence, we can define {z1 . . . z|A|} 2 Z latent
actions, where |Z| = |A| is used as an initial guess for the
number of latent actions. However, there may be more or
less types of transitions that appear in the demonstration
data. For example, if an agent has an action to move left
but always moves right, then the "left" transition will not
be observed. Or if the agent moves right and bumps into
a wall, this stationary transition may appear to be another

type of action. As such, we will empirically study the effect
of using latent actions when |Z| 6= |A|.

3.2. Step 1: Learning latent policies

In perhaps the most straightforward approach for imitation
learning, behavioral cloning, given expert states and actions
{s1, a1 . . . sn, an}, we can use supervised learning to ap-
proximate ⇡(a|st). That is, given a state st, this approach
predicts the probability of taking each action, i.e., the policy.
However, imitation by observation approaches do not have
access to expert actions. To address this, behavioral cloning
from observation (BCO) (Torabi et al., 2018) first learns
an inverse dynamics model f(a|st, st+1) by first collecting
samples in the agent’s environment. Then, the approach
uses this model to label the expert observations and learn
⇡(a|st). However learning dynamics models online can re-
quire a large amount of data, especially in high-dimensional
problems.

We make the observation that we do not need to know action
labels to make an initial hypothesis of the policy. Rather, our
approach aims learns a latent policy ⇡!(z|st) that estimates
the probability that a latent action z would be taken when
observing st. This process can be done offline and hence
more efficiently utilizes the demonstration data.

In order to learn this latent policy, we introduce a latent
policy network with two key components: a latent forward
dynamics model G that learns to predict bst+1, and a prior
over z given st, which gives us the latent policy, as shown in
figure 1. We then use a limited number of interactions with
the environment to learn an action-repmapping network that
efficiently associates the true actions the agent can take with
the latent policy identified by our learned model. These
methods are outlined in algorithm 1 and will be discussed in
the remainder of this section. Code is additionally provided
in the supplementary.

Finally, rather than operating directly on state inputs, we
use an embedding to encode the states. This is useful for



Experiments: Classic Control

• Access to expert observations only 
• No reward function used in approach 
• Comparison to Behavioral Cloning from Observation [1] 

[1] Torabi, Faraz, Garrett Warnell, and Peter Stone. "Behavioral cloning from observation." Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, 2018.



Experiments: CoinRun



Experiments: CoinRun



Thank You! 
Room: Pacific Ballroom at 6:30pm (Today)!  
Poster: #33


