

Maximum Entropy-Regularized Multi-Goal Reinforcement Learning

Rui Zhao*, Xudong Sun, Volker Tresp

Siemens AG & Ludwig Maximilian University of Munich | June 2019 | ICML 2019

Introduction

In Multi-Goal Reinforcement Learning, an agent learns to achieve multiple goals with a goal-conditioned policy. During learning, the agent first collects the trajectories into a replay buffer and later these trajectories are selected randomly for replay.

OpenAl Gym Robotic Simulations

Motivation

- We observed that the achieved goals in the replay buffer are often biased towards the behavior policies.
- From a Bayesian perspective (Murphy, 2012), when there is no prior knowledge of the target goal distribution, the agent should learn uniformly from diverse achieved goals.
- We want to encourage the agent to achieve a diverse set of goals while maximizing the expected return.

Contributions

- First, we propose a novel multi-goal RL objective based on weighted entropy, which is essentially a reward-weighted entropy objective.
- Secondly, we derive a safe surrogate objective, that is, a lower bound of the original objective, to achieve stable optimization.
- Thirdly, we developed a Maximum Entropy-based Prioritization (MEP) framework to optimize the derived surrogate objective.
- We evaluate the proposed method in the OpenAl Gym robotic simulations.

A Novel Multi-Goal RL Objective Based on Weighted Entropy

Guiacsu [1971] proposed weighted entropy, which is an extension of Shannon entropy. The definition of weighted entropy is given by

$$\mathcal{H}_p^w = -\sum_{k=1}^K w_k p_k \log p_k$$

where w is the weight of the event and p is the probability of the event.

$$\eta^{\mathcal{H}}(\boldsymbol{\theta}) = \mathcal{H}_p^w(\boldsymbol{\mathcal{T}}^g) = \mathbb{E}_p \left[\log \frac{1}{p(\boldsymbol{\tau}^g)} \sum_{t=1}^T r(S_t, G^e) \mid \boldsymbol{\theta} \right]$$

This objective encourages the agent to maximize the expected return as well as to achieve more diverse goals.

* We use τ^g to denote all the achieved goals in the trajectory τ , i.e., $\tau^g = (g_0^s, ..., g_T^s)$.

A Safe Surrogate Objective

The surrogate $\eta^{\mathcal{L}}(\boldsymbol{\theta})$ is a lower bound of the objective function, i.e., $\eta^{\mathcal{L}}(\boldsymbol{\theta}) < \eta^{\mathcal{H}}(\boldsymbol{\theta})$, where

$$\eta^{\mathcal{H}}(\boldsymbol{\theta}) = \mathcal{H}_p^w(\boldsymbol{\mathcal{T}}^g) = \mathbb{E}_p\left[\log \frac{1}{p(\boldsymbol{\tau}^g)} \sum_{t=1}^T r(S_t, G^e) \mid \boldsymbol{\theta}\right]$$

$$\eta^{\mathcal{L}}(\boldsymbol{\theta}) = Z \cdot \mathbb{E}_q \left[\sum_{t=1}^T r(S_t, G^e) \mid \boldsymbol{\theta} \right]$$

$$q(\boldsymbol{\tau}^g) = \frac{1}{Z} p(\boldsymbol{\tau}^g) \left(1 - p(\boldsymbol{\tau}^g)\right)$$

Z is the normalization factor for $q(\boldsymbol{\tau}^g)$.

 $\mathcal{H}_p^w(\mathcal{T}^g)$ is the weighted entropy (Guiacsu, 1971; Kelbert et al., 2017), where the weight is the accumulated reward $\Sigma_{t=1}^T r(S_t, G^e)$, in our case.

Maximum Entropy-based Prioritization (MEP)

MEP Algorithm: We update the density model to construct a higher entropy distribution of achieved goals and update the agent with the more diversified training distribution.

Mean success rate and training time

Table 1. Mean success rate (%) and the training time (hour) for all six environments

	Push		Pick & Place		Slide	
Method	success	time	success	time	success	time
DDPG	99.90%	5.52h	39.34%	5.61h	75.67%	5.47h
DDPG+PER	99.94%	30.66h	67.19%	25.73h	66.33%	25.85h
DDPG+MEP	99.96%	6.76h	76.02%	6.92h	76.77%	6.66h
	Egg		Block		Pen	
	Eg	gg	Blo	ock	Pe	en
Method	success	time	success	time	success	time
Method DDPG+HER						
	success	time	success	time	success	time

Entropy of achieved goals versus and training epoch

No MEP: 5.13 ± 0.33 With MEP: 5.59 ± 0.34

No MEP: 5.73 ± 0.33 With MEP: 5.81 ± 0.30

No MEP: 5.78 ± 0.21 With MEP: 5.81 ± 0.18

Summary and Take-home Message

- Our approach improves performance by nine percentage points and sample-efficiency by a factor of two while keeping computational time under control.
- Training the agent with many different kinds of goals, i.e., a higher entropy goal distribution, helps the agent to learn.
- The code is available on GitHub: https://github.com/ruizhaogit/mep
- Poster: 06:30 -- 09:00 PM @ Pacific Ballroom #32

Thank you!