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Problem

e Multi-Objective Reinforcement Learning

® Vector-valued rewards: r
® Linear scalarization: 'Importance’ of each component: w
® Try to maximize weighted return:
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® ‘importance’ w; changes over time
® Quick adaptation needed to maximize:
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® Focus on high-dimensional problems



Conditioned Network (CN)
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Updating the Conditioned Network

Considered loss functions
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Updating the Conditioned Network

Considered loss functions
1. Train on current weight vector w;

LOSScn—active = |y¥) — Qen(ay, 555 we)|

2. Train on randomly sampled past weight vector w;

LOSScn-—uvvea = Iy — Qen(aj, s w)))|

3. Train on both

1. . .
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Diverse Experience Replay (DER)

e Replay buffer bias: how can we counter it?
e By preserving diverse experiences

Replay buffer diversity with and
without DER. Each dot marks a
stored trajectory’s 3-dimensional re-

turn.




Our CN algorithm converges to near-optimality
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Diversity is crucial for large but sparse weight changes
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Thank you!
e Poster #49
® 6:30pm to 9pm
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