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A simple actor-critic policy gradient setup
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What do we optimize exactly?
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Portfolio of Learners (varying discount rates)
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Why varying discount rates?




Why varying discount rates?




Back to Portfolio of Learners
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Adding a Resource Manager
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Adding Neuroevolution
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EXperIment Human0|d —-— Neuroevolution
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e Solves Humanoid under 1 million samples
e TD3 learners fail entirely
e Neuroevolution ~62.5 million samples

Performance
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