Diagnosing Bottlenecks in Deep Q-learning Algorithms

Justin Fu*, Aviral Kumar*, Matthew Soh, Sergey Levine

Motivation

Deep Q-learning methods are notoriously brittle and hard to tune

Motivation

Deep Q-learning methods are notoriously brittle and hard to tune

Compared to supervised learning, Q-learning is poorly understood

Motivation

Deep Q-learning methods are notoriously brittle and hard to tune

- Compared to supervised learning, Q-learning is poorly understood
- Our goal: empirically measure the extent of potential theoretical issues and identify effective research directions.
 - Unit test on tractable domains, verify on standard deep RL tasks

• Divergence is **not** common in practice

- Divergence is **not** common in practice
- Solution quality deteriorates rapidly with weaker approximators.
 - Bias is amplified

- Divergence is **not** common in practice
- Solution quality deteriorates rapidly with weaker approximators.
 - Bias is amplified

- Divergence is **not** common in practice
- Solution quality deteriorates rapidly with weaker approximators.
 - Bias is amplified

Large architectures tend to do better even in the presence of overfitting.

- Large architectures tend to do better even in the presence of overfitting.
- The **number of gradient steps** per sample is a simple parameter that greatly affects performance.

- Large architectures tend to do better even in the presence of overfitting.
- The number of gradient steps per sample is a simple parameter that greatly affects performance.

- Large architectures tend to do better even in the presence of overfitting.
- The number of gradient steps per sample is a simple parameter that greatly affects performance.

- Large architectures tend to do better even in the presence of overfitting.
- The number of gradient steps per sample is a simple parameter that greatly affects performance.

Can early stopping help?

 We can automatically tune the number of steps using some criterion (such as validation error).

- On-policy not always better.
 - Intuition: Narrow distribution; can easily query out-of-distribution values

- On-policy not always better.
 - Intuition: Narrow distribution; can easily query out-of-distribution values
- Using data directly from a replay buffer works well, if not better.

High-entropy generally performs better

- On-policy not always better.
 - Intuition: Narrow distribution; can easily query out-of-distribution values
- Using data directly from a replay buffer works well, if not better.
- High-entropy distributions over the state space are generally effective

High-entropy generally performs better

- On-policy not always better.
 - Intuition: Narrow distribution; can easily query out-of-distribution values
- Using data directly from a replay buffer works well, if not better.
- High-entropy distributions over the state space are generally effective

Our new work on being robust to static datasets: arxiv/1906.00949

Adversarial Feature Matching (AFM)

 How can we create a sampling distribution that incorporates all major insights found so far?

Adversarial Feature Matching (AFM)

 How can we create a sampling distribution that incorporates all major insights found so far?

Key Idea: Learn distribution as a minimax game, with a feature matching constraint

Minimax Objective

- Prioritize on states with high Bellman error
- Enforce independence of features for different states

(Function Approx)

(Overfitting + Function Approx)

Adversarial Feature Matching (AFM)

Generous improvement on MuJoCo tasks

Check out Poster #44

Code, Colab Notebooks available online!

