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e Deep Q-learning methods are notoriously brittle and hard to tune

Unstable
A | Training

CartPole-v0

e Compared to supervised learning, Q-learning is poorly understood

e QOur goal: empirically measure the extent of potential theoretical issues
and identify effective research directions.
o Unit test on tractable domains, verify on standard deep RL tasks
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e Divergence is not common in practice
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e Divergence is not common in
practice
e Solution quality deteriorates rapidly

with weaker approximators.
o Bias is amplified
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Amplified
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e Large architectures tend to do better even in the presence of overfitting.
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e Large architectures tend to do better even in the presence of overfitting.
e The number of gradient steps per sample is a simple parameter that
greatly affects performance.
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e \We can automatically tune the number of steps using some criterion (such as

validation error).

Boost from
early stopping
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e On-policy not always better.
o Intuition: Narrow distribution; can easily
query out-of-distribution values
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Replay Buffer outperforms

e On-policy not always better. on-policy data Uniform e
o Intuition: Narrow distribution; can easily A
query out-of-distribution values

e Using data directly from a replay
buffer works well, if not better.
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Our new work on being robust to static datasets: arxiv/1906.00949
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https://arxiv.org/abs/1906.00949

e How can we create a sampling distribution that incorporates all major insights
found so far?
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e How can we create a sampling distribution that incorporates all major insights
found so far?

Key Idea: Learn distribution as a minimax game, with a feature matching
constraint

/ Minimax Objective

e Prioritize on states with high Bellman error (Function Approx)
e Enforce independence of features for different states (Overfitting + Function Approx)

~ Feature Matching
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Generous improvement on MuJoCo tasks
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¢ Bias “doubles up”
¢ Models with low bias

Function Approximation

Important/Desirable

Sometimes desirable

Better Q-Learning Algorithm

Overfitting Sampling Distribution
* Gradient Steps » Higher Entropy
* Regularization? * Prioritizing Adversely
* Early Stopping e On-Policy

Check out Poster #44

Code, Colab Notebooks available online!
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