

Task-Agnostic Dynamics Priors for Deep Reinforcement Learning

Yilun Du¹, Karthik Narasimhan²

¹ MIT, ² Princeton

Key Questions

- Can we learn physics in a task-agnostic fashion?
- Does it help sample efficiency of RL?
- Can we transfer the learned physics from one environment to other?

Dynamics Model in RL

- Frame Prediction (Oh et al.(2015), Finn et al.(2016), Weber et al. (2017), ...)
 - Action conditional and not easily transferable across environments
- Parameterized physics models (Cutler et al. (2014), Scholz et al. (2014), Zhu et al. (2018), ...)
 - Requires manual specification
- Our method: learn physics priors through task-independent data
 - Action unconditional modeling of data
 - Inductive local biases in architecture to reflect local nature of physics

Overall Approach

- Pre-train a frame predictor on physics videos
- Initialize dynamics model and use it to train a policy
- Simultaneously fine-tune dynamics model on target environment.

SpatialNet

- Two key operations:
 - Isolation of dynamics of each entity
 - Accurate modeling of dynamic interactions of local spaces around each entity

Spatial Memory

- Use 2D grid memory to locally store dynamic state of each object
- Use convolutions and residual connections to better model dynamics (instead of additive updates in the ConvLSTM model (Xingjian et al., 2015))

Spatial Memory

- Use 2D grid memory to locally store dynamic state of each object
- Use convolutions and residual connections to better model dynamics (instead of additive updates in the ConvLSTM model (Xingjian et al., 2015))

Experimental Setup

- PhysVideos: 625k frames of video containing moving objects of various shapes and sizes
- PhysWorld: Collection of 2D/3D Physics-centric games
- Atari: Stochastic version with sticky actions
- RL agent: Predicted frames stack with observation frames as joint input into a policy
- Same prior for all tasks

PhysGoal

PhysShooter

PhysForage

Phys3D

Model Predictions

Model	10 step	Objects Lost
RCNet (Oh et al., 2015)	0.0268	1.0
ConvLSTM (Xingjian et al., 2015)	0.0503	0.4
ConvLSTM + Residual	0.0210	0.45
SpatialNet	0.0176	0.13

Pixel Prediction Accuracy

Predicting Physical Parameters

Policy Learning: PhysShooter

Policy Learning: Atari

Transfer Learning

Target env: PhysShooter

Model Transfer > Model + Policy Transfer > No Transfer

Conclusion

- Task-agnostic priors over models provide a potential solution for improving sample efficiency for RL
- Being task-agnostic allows us to pre-train priors without access to the target task
- Such priors also generalize well to a wide variety of tasks and show good transfer performance