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Motivation

* By definition, the performance of RL agents heavily relies on the
quality of reward functions.

max, £ {ZtT:l vir(se, &t)}

Computer Games Dialogue Multi-Agent System

* In many real-world scenarios, especially in multi-agent settings,
hand-tuning informative reward functions can be very challenging.

e Solution: learning from expert demonstrations!



Motivation

* Imitation learning does not recover reward functions.
e Behavior Cloning

" = max B [log m(als)]

* Generative Adversarial Imitation Learning [Ho & Ermon, 2016]

IRL(7g) = argmax —4(r) + Ex [r(s, a)] — RL(r)
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Motivation

* Why should we care reward learning?

* Scientific inquiry: human and animal behavioral study, inferring
intentions, etc.

* Presupposition: reward function is considered to be the most succinct,
robust and transferable description of the task. [Abbeel & Ng, 2014]

r* = (object_pos — goal_pos)?
VS.
™ :8 = P(A)

* Re-optimizing policies in new environments, debugging and analyzing
imitation learning algorithms, etc.

* These properties are even more desirable in the multi-agent settings.



Preliminaries

* Single-Agent Inverse RL

 Basic principle: find a reward function that explains the expert behaviors.
(ill-defined)

* Maximum Entropy Inverse RL (MaxEnt IRL) provides a general
probabilistic framework to solve the ambiguity.

e Maximum Entropy Inverse RL (MaxEnt IRL) provides a general
probabilistic framework to solve the ambiguity.

Pu(T) X [77(81) [T PG s, at)] exp (Z ru(s’, at))

t=1

T
max E,, [logp,(7)] = Erorp [Z 7o (st at)] —log Z,,
t=1

where Z,, is the partition function.



Preliminaries

* Single-Agent Inverse RL

» Adversarial Inverse RL (AIRL) provides an efficient sampling-based
approximation to MaxEnt IRL.

» Special discriminator structure:
exp(fu,g(s,a, "))
exp(fuw.0(s,a,s")) + m(als)
fus(s,a,8") =ru(s,a) +vhe(s") — hy(s)
* Train the policy (generator) with log D —log(1 — D),

* Under certain conditions, r,(s,a)is guaranteed to recover the ground-
truth reward up to a constant.

D, 4(s,a,8") =



Preliminaries

* Markov Games [Littman, 1994]: A multi-agent generalization to
markov decision process.
e Agent number NV
* State space S
« Action spaces {A:}iv
* Transition dynamics P: S x A; X ... x Ay — P(S)
* Initial state distribution 17 € P(S)



Preliminaries

* Solution Concepts to Markov Games

» Correlated equilibrium (CE) [Aumann, 1974]: A joint strategy profile, where
no agent can achieve higher expected reward through unilaterally
changing its own policy.

* Nash equilibrium (NE) [Hu et al, 1998]: A more restrictive equilibrium which
further requires agents’ actions in each state to be independent.

* Incompatible with MaxEnt IRL.



Preliminaries

* Solution Concepts to Markov Games

 Logistic quantal response equilibrium (LQRE) [McKelvey & Palfrey, 1995; 1998]:
A stochastic generalization to NE and CE.

* LQRE is a joint strategy profile satisfying the set of constraints:

exp (AExpRetT (s, a;, a_;))
> exp (AExpRet] (s,a},a_;))

ExpRet] (s¢, at) = Egev1r geirr [Z N hri(st al)|se, ay, 7]
1>t

WL(aL’S) =

* Existing optimality notions do not explicitly define a tractable joint
strategy profile, which we can use to maximize the likelihood of
expert demonstrations.



Method

* Logistic Stochastic Best Response Equilibrium

* Motivated by LQRE, Gibbs sampling [Hastings, 1970], dependency networks
[Heckerman et al, 2000] and best response dynamics [Nisan et al, 2011].



Method

* Logistic Stochastic Best Response Equilibrium

* Single-shot normal-form game: Consider a Markov chain over A; X ... x Axn,
where the state of the markov chain at step ¥ is denoted z*) = (z1,---, zn) ¥,

exp(Arq(aq, z(_kl)))
0 exp(Ari(af, 21)))

* Because the markov chain is ergodic, it admits a unique stationary joint policy,
which we call a LSBRE for normal-form game.



Method

* Logistic Stochastic Best Response Equilibrium

« Markov game: Consider T markov chains over (Ag x - AN)|S|, where the
state of the ¢-th markov chain at step k is {z/'" : § — A}

* For t € [T,...,1], we recursively define the ¢t-th markov chaln with the
following update rule:

(6t ~ Pl(atlal, = 25 (s1), s") =
exp (AQF ™ (51, at, 220(s1))

Ea; exp (/\ert—l-l T (St CL Zt (/s)( ))

* We define the unique stationary joint distribution of the markov chains as
LSBRE strategy profiles:

w(ay, - ,anl|s") (ﬂ{zt(oo (s") —a}>




Method

e Multi-Agent Adversarial Inverse RL

* By parameterizing the reward functions with w, the trajectory distribution
under LSBRE is given by:

T T
p(r) = n(s") - [ = (a'ls'sw) - ] P(s st a)
t=1 t=1

* Maximizing the likelihood of expert demonstrations corresponds to:

T
max Erng [Z log 7' (a’|s"; w)]

t=1



Method

e Multi-Agent Adversarial Inverse RL

* Bridging the optimization of joint likelihood and each conditional
likelihood with maximum pseudolikelihood estimation (Theorem 2):

Let 71,--.,7M be i.i.d. sampled from LSBRE induced by some unknown
reward function.

Suppose that 7f(af|a’ ;,s;w;) is differentiable w.r.t. w;.

Then as M — oo, with probability tending to 1, the equation

a M T N
Z j :j : tr. m,t; _m,t _m.,t, _
8_w log 7T,L' (al, a_@' 9 S 9 wl) - 0

m=1t=1 i=1

has a root that tends to be the maximizer of joint likelihood.



Method

e Multi-Agent Adversarial Inverse RL
* Maximizing the pseudolikelihood objective:

Erg ZZ—logvr (at|a® ;, s"; wb)]

» By characterizing the trajectory distribution of LSBRE (Theorem 1), we
can optimize the following surrogate loss:

a ) )
Erg [ZZ&U 9 a wZ] Za—logZ

=1 t=1



Method

e Multi-Agent Adversarial Inverse RL

* Practical MA-AIRL Framework
* Train the w-parameterized discriminators as:

eXp(fwi (S7a)) q0; (ai|5)

+ qu

N
max E;, | 1
o [;i} % exp(fr (5.2)) + a5, (ai]s) ;52 % exp(fu (5,2)) + o, (ai]5)

* Train the 0-parameterized generators (policies) as:

max Eq,

Zm&wMmemeﬁ

i=1

qg

wa s,a) — log(qo, (ai|s ))]



Experiments

* Policy imitation performance
» Cooperative tasks: cooperative navigation & cooperative communication,
* Use the ground-truth reward as the oracle evaluation metric.

Table 1. Expected returns in cooperative tasks. Mean and variance
are taken across different random seeds used to train the policies.

Algorithm | Nav. ExpRet | Comm. ExpRet

Expert -43.195 £ 2.659 -12.712 £ 1.613
Random | -391.314 £ 10.092 | -125.825 £ 3.4906

MA-GAIL | -52.810 + 2.981 -12.811 £ 1.604
MA-AIRL | -47.515 4+ 2.549 -12.727 £ 1.557




Experiments

* Policy imitation performance
» Competitive task (competitive keep-away)
» “Battle” evaluation: we place the experts and learned policies in the
same environment; a learned policy is considered better if it receives a
higher expected return than its opponent.

Table 2. Expected returns of the agents in competitive task.
Agent #1 represents the agent trying to reach the target and
Agent #2 represents the adversary. Mean and variance are taken
across different random seeds.

Agent #1 ‘ Agent #2 ‘Agent#l ExpRet

Expert ‘ Expert ‘ -6.804 + 0.316
MA-GAIL Expert -6.978 £ 0.305
MA-AIRL Expert -6.785 £+ 0.312

Expert MA-GAIL | -6.919 £ 0.298
Expert MA-AIRL -7.367+ 0.311




Experiments

* Reward recovery

* Measuring the statistical correlation between the learned reward and the
ground-truth.

* A more direct evaluation in multi-agent system.

» Pearson’s correlation coefficient (PCC): measures the linear correlation
between two random variables.

» Spearman’s rank correlation coefficient (SCC): measures the statistical
dependence between the rankings of two random variables.



Experiments

* Reward recovery
* Cooperative tasks

Table 3. Statistical correlations between the learned reward func-
tions and the ground-truth rewards in cooperative tasks. Mean
and variance are taken across /N independently learned reward
functions for N agents.

Task | Metric | MA-GAIL | MA-AIRL
N SCC | 0.792 + 0.085 | 0.934 + 0.015
Y- | pcC | 0.556 + 0.081 | 0.882 + 0.028
Comm. | SCC | 087940059 | 0.936 = 0.080
| PCC | 0612 +0.093 | 0.848 + 0.099




Experiments

* Reward recovery
e Competitive task

Table 4. Statistical correlations between the learned reward func-
tions and the ground-truth rewards in competitive task.

Algorithm | MA-GAIL MA-AIRL

SCC #1 0.424 0.534
SCC #2 0.653 0.907
Average SCC ‘ 0.538 0.721
PCC #1 0.497 0.720
PCC #2 0.392 0.667

Average PCC ‘ 0.445 0.694




Summary

* We proposed a new solution concept for Markov games, which
allows us to characterize the trajectory distribution induced by
parameterized rewards.

* We propose the first multi-agent MaxEnt IRL framework, which is
effective and scalable to Markov games with continuous state-action
space and unknown dynamics.

* We employ maximum pseudolikelihood estimation and adversarial
reward learning to achieve tractability.

* Experimental results demonstrate that MA-AIRL can recover both
policy and reward function that is highly correlated with the ground-
truth.
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