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Sub-Weibull distributions

Main result: Prior on units gets heavier-tailed with depth

Regularization interpretation



3/9

Distribution families with respect to tail behavior

For all k ∈ N, k-th row moment: ‖X‖k =
(
E|X |k

)1/k
Distribution Tail Moments

Sub-Gaussian F (x) ≤ e−λx
2

‖X‖k ≤ C
√
k

Sub-Exponential F (x) ≤ e−λx ‖X‖k ≤ Ck

Sub-Weibull F (x) ≤ e−λx
1/θ

‖X‖k ≤ Ckθ

• θ > 0 called tail parameter

• ‖X‖k � kθ =⇒ X ∼ subW(θ), θ called optimal

• subW(1/2) = subG, subW(1) = subE

• Larger θ implies heavier tail
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Assumptions on neural network

We analyze Bayesian neural networks which satisfy the following assumptions

(A1) Parameters. The weights w have i.i.d. Gaussian prior

w ∼ N (µ, σ2)

(A2) Nonlinearity. ReLU-like with envelope property: exist c1, c2, d2 ≥ 0, d1 > 0 s.t.

|φ(u)| ≥ c1 + d1|u| for all u ∈ R+ or u ∈ R−,

|φ(u)| ≤ c2 + d2|u| for all u ∈ R.

• Examples: ReLU, ELU, PReLU etc, but no compactly supported like sigmoid and tanh.

• Nonlinearity does not harm the distributional tail:

‖φ(X )‖k � ‖X‖k , k ∈ N
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Main theorem

Consider a Bayesian neural network with (A1) i.i.d. Gaussian priors on the weights and
(A2) nonlinearity satisfying envelope property.

Then conditional on input x, the marginal prior distribution of a unit u(`) of `-th hidden layer is
sub-Weibull with optimal tail parameter θ = `/2: π(`)(u) ∼ subW(`/2)
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Interpretation: shrinkage effect

Maximum a Posteriori (MAP) is a Regularized
problem

max
W

π(W|D) ∝ L(D|W)π(W)

min
W
− logL(D|W)− log π(W)

min
W

L(W) + λR(W)

L(W) is a loss function,
R(W) is a norm on Rp, regularizer.

Weight distribution

π(w) ≈ e−w2 ⇒
`-th layer unit distribution

π(`)(u) ≈ e−u2/`

Layer Penalty on W Penalty on U

1 ‖W(1)‖22, L2 ‖U(1)‖22 L2 (weight decay)

2 ‖W(2)‖22, L2 ‖U(2)‖ L1 (Lasso)

` ‖W(`)‖22, L2 ‖U(`)‖2/`2/` L2/`
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Conclusion

(i) We define the notion of sub-Weibull distributions, which are characterized by tails lighter than (or
equally light as) Weibull distributions.

(ii) We prove that the marginal prior distribution of the units are heavier-tailed as depth increases.

(iii) We offer an interpretation from a regularization viewpoint.

Future directions:

• Prove the Gaussian process limit of sub-Weibull distributions in the wide regime;

• Investigate if the described regularization mechanism induces sparsity at the unit level.
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