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Sub-Weibull distributions

Main result: Prior on units gets heavier-tailed with depth

Regularization interpretation
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Distribution families with respect to tail behavior

For all k € N, k-th row moment: || X|, = (IE|X\‘<)1/k

015+
Distribution Tail Moments ~
N
bmeel N
Sub-Gaussian F(x) < e 1 X]lk < CVk 2010 Y
Sub-Exponential  F(x) < e ** [IX||« < Ck é:n
Sub-Weibull Fx)<e™"|IX]|l, < Ck
e ¢ > 0 called tail parameter

sub-W(1/2)
sub-Wi1)
sub-W(3/2)

1 X][x =< k = X ~ subW(8), 6 called optimal
subW(1/2) = subG, subW(1) = subE

Larger 0 implies heavier tail
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Assumptions on neural network

We analyze Bayesian neural networks which satisfy the following assumptions
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Assumptions on neural network

We analyze Bayesian neural networks which satisfy the following assumptions
(A1) Parameters. The weights w have i.i.d. Gaussian prior

w ~ N(u,0?)
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Assumptions on neural network

We analyze Bayesian neural networks which satisfy the following assumptions
(A1) Parameters. The weights w have i.i.d. Gaussian prior

w ~ N(u,0?)

(A2) Nonlinearity. ReLU-like with envelope property: exist c1, c2,d> > 0, di > 0 s.t.

|¢p(u)] > 1 + di|u| forall u e Ry or u e R_,
|p(v)] < & + daju| for all u € R.
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Assumptions on neural network

We analyze Bayesian neural networks which satisfy the following assumptions
(A1) Parameters. The weights w have i.i.d. Gaussian prior

w ~ N(u,0?)

(A2) Nonlinearity. ReLU-like with envelope property: exist c1, c2,d> > 0, di > 0 s.t.

|¢p(u)] > 1 + di|u| forall u e Ry or u e R_,
|p(v)] < & + daju| for all u € R.

e Examples: ReLU, ELU, PReLU etc, but no compactly supported like sigmoid and tanh.

e Nonlinearity does not harm the distributional tail:

[o(X) e =< [ Xk, k€N
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Main theorem
Consider a Bayesian neural network with (A1) i.i.d. Gaussian priors on the weights and
(A2) nonlinearity satisfying envelope property.
Then conditional on input x, the marginal prior distribution of a unit u(?) of /-th hidden layer is
sub-Weibull with optimal tail parameter 6 = £/2: 79 (u) ~ subW(¢/2)

input " layer

10°

—— subW(50)
subW(5)
—— subW(3/2)
—— subW(1)
—— subW(1/2)

0 10 20 30 40 50 60 70

subW(%) SubW(l) subW(%) SubW(g) 3 N

Vladimirova et al. Understanding priors in Bayesian neural networks at the unit level



Outline

Sub-Weibull distributions

Main result: Prior on units gets heavier-tailed with depth

Regularization interpretation

e

hwmm’mmm



Interpretation: shrinkage effect

Maximum a Posteriori (MAP) is a Regularized ~Weight distribution £-th layer unit distribution
problem m(w) ~ efwz = ﬂ_(@)(u) ~ e7u2/1;
max m(W|D) x L(D|W)m (W)
min — log £(D|W)— log 7(W) Layer Penalty on W  Penalty on U
w
mv‘iln L(W) + AR(W) 1 (W®3, 22 Ju®)3 L£? (weight decay)
@2 p2 ) 1
L(W) is a loss function, 2 Wiz, £ I £ (Lasso)
R(W) is a norm on RP, regularizer. L W3, 22 HU(Z)H?% L2
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Conclusion

(i) We define the notion of sub-Weibull distributions, which are characterized by tails lighter than (or
equally light as) Weibull distributions.

(ii) We prove that the marginal prior distribution of the units are heavier-tailed as depth increases.

(iii) We offer an interpretation from a regularization viewpoint.

Future directions:
e Prove the Gaussian process limit of sub-Weibull distributions in the wide regime;

o Investigate if the described regularization mechanism induces sparsity at the unit level.
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