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ABC: Simulation-based inference

ABC only requires that we can simulate data from our model p(y |θ), thus ABC is very
generic, and can be applied for models where the likelihood is intractable;

ABC in a nut-shell:
1 Generate parameter proposals θ? from the prior p(θ);
2 Accept θ? if the generated data y? ∼ p(y |θ?) is similar to our observed data yobs;
3 Repeat Step 1-2 for a large number of times;
4 The accepted θ’s are samples from an approximation to the posterior p(θ|yobs).

Curse-of-dimensionality : Instead of comparing y? with yobs we compare a set of summary
statistics S(y?) and S(yobs);

The main focus of our work is how to automatically learn summary statistics S(·) that are
informative for θ.
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How to select/learn summary statistics

The problem of selecting informative summary statistics is the main challenge when
applying ABC in practice;

Usually, summary statistics are ad-hoc and “handpicked” out of subject-domain expertise;

In they show that the best summary statistics (in terms of quadratic loss for θ) is the
posterior mean E (θ|y);

Deep learning methods that learn the posterior mean as a summary statistic for ABC have
already been considered.
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1Paul Fearnhead and Dennis Prangle. “Constructing summary statistics for approximate Bayesian
computation: semi-automatic approximate Bayesian computation”. In: Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 74.3 (2012), pp. 419–474.
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Designing the PEN architecture

We build on the earlier ideas and we want to target time series models;

Thus, we construct a regression function y 7→ E (θ|y) that is d-block-switch invariant,
yielding following regression problem:

θi = E (θ|y i ) + ξi = ρβρ

(
y i1:d ,

M−d∑
l=1

φβφ(y il :l+d)

)
︸ ︷︷ ︸

PEN−d

+ξi .

We have a universal approximation theorem for this architecture;

DeepSets is a special case of PEN.
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3Manzil Zaheer et al. “Deep sets”. In: Advances in Neural Information Processing Systems. 2017,
pp. 3391–3401.
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AR(2) model

An autoregressive time series model of order two (AR(2)) follows:

yl = θ1yl−1 + θ2yl−2 + zl , zl ∼ N(0, 1).

The AR(2) model is a Markov model of order 2 and the requirement for PEN-d (d > 0) is
therefore fulfilled;

We use a PEN-2 network (and compare with several different other methods).
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AR(2) model: Inference results with 106 training data points

Figure: Green line: prior distribution; contour plot: exact posterior, the blue dots are 100 samples from
the several ABC posteriors.
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Figure: Green line: prior distribution; contour plot: exact posterior, the blue dots are 100 samples from
the several ABC posteriors.

Samuel Wiqvist (Lund University) Partially Exchangeable Networks and ABC June 13, 2019 8 / 11



AR(2) model: Inference results with 103 training data points

Figure: Green line: prior distribution; contour plot: exact posterior, the blue dots are 100 samples from
the several ABC posteriors.
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Conclusions

PEN is more data efficient than the other methods;

Does PEN work for time-series models that are not Markovian? Check out the
paper/poster to find out!;

Learning summary statistics for ABC is only one possible application for PEN.

Samuel Wiqvist (Lund University) Partially Exchangeable Networks and ABC June 13, 2019 10 / 11



Conclusions

PEN is more data efficient than the other methods;

Does PEN work for time-series models that are not Markovian? Check out the
paper/poster to find out!;

Learning summary statistics for ABC is only one possible application for PEN.

Samuel Wiqvist (Lund University) Partially Exchangeable Networks and ABC June 13, 2019 10 / 11



Conclusions

PEN is more data efficient than the other methods;

Does PEN work for time-series models that are not Markovian? Check out the
paper/poster to find out!;

Learning summary statistics for ABC is only one possible application for PEN.

Samuel Wiqvist (Lund University) Partially Exchangeable Networks and ABC June 13, 2019 10 / 11



The end

Thank you for listening!

Find the paper at: tinyurl.com/pen-and-abc

Poster (today at 6:30PM): Pacific Ballroom #87
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