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Categorical latent variable optimization

@ Goal: Maximize the expectation with respect to categorical variables

£(@) = [ F(2)0o(2)dz = B,y lF(2)]

o Notations:
@ f(z) is the reward function for categorical z

Q@ z=(z,...,2x) €{1,2,...,C}¥ is a K-dimensional C-way
multivariate categorical vector

Q g4(2) = Hszl Categorical(zx; o(¢y)) is the categorical distribution
whose parameters ¢ € RXC needs to be optimized

@ Challenge: It is difficult to estimate
Vel(@)
especially for large K and C.
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Derivation of ARSM

e Augment: the categorical variable z ~ Cat(o(¢)) can be
equivalently generated as

z = argmin mie %, 7 ~ Dir(1¢).
ie{1,...,C}

Thus £(@) = Ezqy(2)[f(2)] = Exvpirao)[f (arg min; m;e~%)].
o REINFORCE:
V$E(9) = Erpir(1o)|f (arg min; mie=?)(1 — C)]

e Swap: Swapping the it" and j elements of 7 would not change the
expectation, which is a property used to provide self-controlled
variance reduction (without any tuning parameters).

o Merge: Sharing random numbers between differently expressed but
equivalent expectations leads to V4 &(¢) = Expir(1.)[8aRSM(77)]

C
gARsM(T)c CZ (z) sz_: (zm=)| (1 = Cmj)
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An illustration example

Optimize ¢ € RC to maximize B, car(o(s))[f(2)], f(2) := 0.5+ z/(CR)
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Figure: The optimal solution is o(¢) = (0,...,1). The reward is computed
analytically by E,cat(o(¢))[f(2)] with maximum as 0.533.
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VAEs with one or two categorical hidden layers
(20-dimensional 10-way categorical)
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Figure: Plots of negative ELBOs (nats) on binarized MNIST against training
iterations. The solid and dash lines correspond to the training and testing
respectively.
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Reinforcement Learning (a sequence

of categorical actions)

CartPole LunarLander Acrobot
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Figure: Moving average reward and log-variance of gradient estimator. In each
plot, the solid lines are the median value of ten independent runs. The opaque

bars are 10th and 90th percentiles.
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Thank you!

Welcome to our poster at Pacific Ballroom #85
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