Dropout as a
Structured Shrinkage Prior

Eric Nalisnick, Jose Miguel Hernandez-Lobato, Padhraic Smyth




Dropout & Multiplicative Noise

Improving neural networks by preventing (2012)
co-adaptation of feature detectors

G. E. Hinton*, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov

Department of Computer Science, University of Toronto,
6 King’s College Rd, Toronto, Ontario M5S 3G4, Canada

,‘

{
%
\

»

X
0
4

S

N

\/ \/
v
é:’e
(AR
XX

5
N
W
NS
(O
ex ‘\$
A

/

$
.

l’
7
v
7%
KJS
Xoe
<V
A

\V

X

%
7
Y

()
/A
(
C

5
N7
0

)
5
®

X
X

Standard Neural After Applying
Network Dropout



Dropout & Multiplicative Noise

Improving neural networks by preventing (2012)
co-adaptation of feature detectors

G. E. Hinton*, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov

Department of Computer Science, University of Toronto,
6 King’s College Rd, Toronto, Ontario M5S 3G4, Canada

Standard Neural After Applying
Network Dropout

Implementation as Multiplicative Noise:

hn,l — fl (hn,l—lAlWl)
2 \

Hidden Units Weights

Diagonal Matrix of
Random Variables

Aii ~ p(A)
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Standard Neural After Applying
Network Dropout

Implementation as Multiplicative Noise:

hn,l — fl (hn,l—lAlWl)
2 \

Hidden Units Weights

Diagonal Matrix of
Random Variables

Aii ~ p(A)

® Dropout corresponds to p(A) being Bernoulli.
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Hidden Units Weights

Diagonal Matrix of
Random Variables

Aii ~ p(A)

® Dropout corresponds to p(A) being Bernoulli.
Standard Neural After Applying ® (Gaussian, beta, and uniform noise have
Network Dropout been shown to work as well.
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Dropout as a Gaussian Scale Mixture

Gaussian Scale Mixtures

A random variable 6 is a Gaussian scale mixture
Iff it can be expressed as the product of a
Gaussian random variable and an independent

scalar random variable [Beale & Mallows, 1959]:

eiaza < N(07 08)7 o Np(a)
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Gaussian Scale Mixtures

A random variable 6 is a Gaussian scale mixture
Iff it can be expressed as the product of a
Gaussian random variable and an independent

scalar random variable [Beale & Mallows, 1959]:

eiaza < N(07 08)7 o Np(a)

Can be reparametrized into a
hierarchical form:

< ™ N(Ov QQJ(%)? Q ~ p(Oz)



Dropout as a Gaussian Scale Mixture

Gaussian Scale Mixtures Let's assume a Gaussian prior on
the NN weights...

A random variable 8 is a Gaussian scale mixture

Iff it can be expressed as the product of a f
((hy -1 A W))

Gaussian random variable and an independent
scalar random variable [Beale & Mallows, 1959]:

) . Noise Weights
0=az, z~N(0,05), o~ pla) Aisi ~ P(A) w; j ~ N(0, o)

Can be reparametrized into a
hierarchical form:

2~ N(0,0%0p), a~p(a)



Dropout as a Gaussian Scale Mixture

Gaussian Scale Mixtures Let's assume a Gaussian prior on
the NN weights...

A random variable 8 is a Gaussian scale mixture

Iff it can be expressed as the product of a f
((hy -1 A W))

Gaussian random variable and an independent
scalar random variable |Beale & Mallows, 1959 L
Definition of a

Gaussian Scale Mixture

eiaza < N(07 08)7 o Np(a)

Can be reparametrized into a
hierarchical form:

2~ N(0,0%0p), a~p(a)
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Dropout as a Gaussian Scale Mixture

Let's assume a Gaussian prior on

Gaussian Scale Mixtures the NN weights...
A random variable 6 is a Gaussian scale mixture
Iff it can be expressed as the product of a f ‘N]
Gaussian random variable and an independent [ (hn ; [—1 A‘l [ )
scalar random variable |Beale & Mallows, 1959 ’Definition of a‘

Gaussian Scale Mixture

¢ SWITCH TO HIERARCHICAL ¢

0<az, z~N(0,02), a~ p(a)

PARAMETRIZATION

Can be reparametrized into a
hierarchical form:

2 ~N(0,a%03), a~ p(a)
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Dropout as a Gaussian Scale Mixture

Let's assume a Gaussian prior on

Gaussian Scale Mixtures the NN weights...
A random variable 6 is a Gaussian scale mixture
Iff it can be expressed as the product of a f ‘N]
Gaussian random variable and an independent [ (h’l’b ; [—1 A'l [ )
scalar random variable |Beale & Mallows, 1959 ’Definition of a‘

Gaussian Scale Mixture

¢ SWITCH TO HIERARCHICAL ¢

0=az, z~N(0,03), a~ p(a)
PARAMETRIZATION

Can be reparametrized into a
hierarchical form: V\/
f [ (hn A—1 [ )

< N(07 0420'(2)), Q ~ p(CM)

. Noise distribution becomes a scale prior



Dropout as a Gaussian Scale Mixture

Can translate noise distributions into the marginal prior they induce
on the NN weights...

Noise Model P(A) | Variance Prior p()\Q) Marginal Prior p(w)
Bernoulli Bernoulli Spike-and-Slab
(Gaussian Y2 Generalized Hyperbolic
Rayleigh Exponential Laplace

Inverse Nakagami 1 Student-t

Half-Cauchy Unnamed Horseshoe
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Dropout’s Scale Structure

Sampling noise for each hidden unit induces a particular structure...

filh, ;1 A/W)  w;;j ~N(0,08)
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Dropout’s Scale Structure

Sampling noise for each hidden unit induces a particular structure...

filh, ;1 A/W)  w;;j ~N(0,08)

NOISE MATRIX WEIGHT MATRIX
HIDDEN UNITS

| h | X

di-1

di-1 di-1
di-1 d
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Dropout’s Scale Structure

Sampling noise for each hidden unit induces a particular structure...

fl(hn,l—lwl) Wy,5 ~ N(()» )\12,@(78)

| Indexes rows
WEIGHT MATRIX

HIDDEN UNITS

0] X

di-1

di
Shared scale
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Dropout’s Scale Structure

Sampling noise for each hidden unit induces a particular structure...

fl(hn,l—lwl) Wy,5 ~ N(()» )\12,@(78)

| Indexes rows

WEIGHT MATRIX

Same structure as the automatic
relevance determination (ARD) prior

proposed by D. MacKay and R. Neal for
Bayesian NNs (1994).

di-1

di
Shared scale
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Summary

® Under mild assumptions, multiplicative noise is equivalent to a
Gauss. scale mixture prior with ARD structure.
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Summary

® Under mild assumptions, multiplicative noise is equivalent to a
Gauss. scale mixture prior with ARD structure.

® This decouples dropout’s Bayesian interpretation from
variational inference, allowing for any inference strategy.
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Summary

® Under mild assumptions, multiplicative noise is equivalent to a
Gauss. scale mixture prior with ARD structure.

® This decouples dropout’s Bayesian interpretation from
variational inference, allowing for any inference strategy.

® Provides a ‘recipe’ for translating noise distributions into priors,
better revealing their modeling assumptions.
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For more details, please visit our poster (#84)

DROPOUT AS A STRUCTURED SHRINKAGE PRIOR s

Eric Nalisnick, Jose Miguel Hernandez-Lobato, Padhraic Smyth

1. INTRODUCTION 3. MuvrtipLicaTIVE NoISE As A GAUSSIAN ScALE MIXTURE

Dropout has been shown to have a Bayesian interpretation
[Gal & Ghahramani, 2016]. But still there are open questions...

Assuming a Gaussian prior on a neural network’s weights, we observe that...

filhp -1 A W)) > fi(h, -1 W)

Residual networks (ResNets) allow scale sharing to be extended
to whole layers (since information can still propagative via the skip
connection). We term this natural analog of ARD to be automatic

e Why is the noise drawn from a (fixed) Bernoulli dist.?

_ _ . \ P §witch .to — depth determination (ADD). .
e Why does dropping hidden units work best? Definition of a Gaussian Hierarchical 5 9 N | . |
—_ . 5 Scale Mixt Parametrization Wi 45 ~ N(O, )‘z 00) A similar scale mixture
e Is there a principled extension to ResNets: cale Mixture analysis reveals

connections to
stochastic depth
regularization
[Huang et al., 20161.

2. BACKGROUND This insight allows us to translate noise distributions into their induced marginal
prior on the weights:

Multiplicative Noise in NNs (Dropout)

Multiplicative noise regularization is implemented as: Noise Model P(A)| Variance Prior p(A?) | Marginal Prior p(w) :&E&F&;EEEJ&;E.; ___Ahis_r;\;t};_ﬁégt_ﬁ__
h — f (h A W ) Bernoulli Bernoulli Spike-and-Slab Determination Determination
n 7l l n 7l — 1 &8 l Gaussian %2 Generalized Hyperbolic
o - Rayleigh Exponential Laplace 6. EXPERIMENTS
Bernoulli noise Corres.ponds to Diagonal Matrix of Inverse Nakagami R Student-t ]
D.rop.out., but other noise , Random Variables Half-Cauchy Unnamed Horseshoe UCI Regression Data Sets
distributions (Gauss., Beta, uniform) Test Set RMSE

Dropout | Prob. Backprop | Deep GP ARD ADD ARD-ADD
Boston 2.80 +.13 2.795 +.16 238 +.12 || 2.158 +.20 | 2.343 +.31 | 2.367 +.18
Concrete 4.50 +.18 5.241 +.12 4.64 +.11 3.805 +.28 | 4.084 +.34 | 3.761 +.23
Energy 0.47 +.01 0.903 +.05 0.57 +.02 0.852 +.01 | 0.867 +.11 | 0.853 +.08
Kin8nm 0.08 +.00 0.071 +.00 0.05 +.00 || 0.066 +.01 | 0.064 +.00 | 0.064 +.00
Power 3.63 +.04 4.028 +.03 3.60 +.03 3.486 +.10 | 3.290 +.06 | 3.236 +.07
Wine 0.60 +.01 0.643 +.01 0.50 +.01 || 0.561 +.03 | 0.555 +.01 | 0.538 +.03
Yacht 0.66 +.06 0.848 +.05 0.98 +.09 0.691 +.12 | 0.657 +.14 | 0.604 +.16
Avg. Rank 4.4 +1.7 5.6 £0.5 3.1 +1.8 3.0 £11 2.9 +10 2.0+11

have been shown to work as well. )‘j,j ~ p()‘)

4. INDUCED STRUCTURE

Sampling noise for each hidden unit endows the prior with structure...

fi(hp -1 Ay W) > fi(h, ;-1 W)

Drpout ARD

Figure (right) shows heat maps of the
hidden-to-hidden weight matrices.
ARD induces row-structured shrinkage,
ADD induces matrix-wide shrinkage,
and ARD-ADD allows some rows to
grow while preserving global
shrinkage. MC dropout's heat map
seems to balance having some row
structure with strong global shrinkage.

Standard Neural Net. Applying Dropout

Image from [Srivastava et al,, 2014]

NOISE MATRIX WEIGHT MATRIX WEIGHT MATRIX

Gaussian Scale Mixtures (GSMs)

A random variable is a Gaussian scale mixture /ff it can be
expressed as the product of a Gaussian random variable and
an independent scalar random variable [Beale & Mallows, 1959

ARD-ADD

d
0=az, z~N(0,07), a~ pla)
Expanded Parametrization:
az, z~N(0,03), a~ pla)

Beale, E. M. L, and C. L. Mallows. Scale Mixing of Symmetric Distributions with Zero Means. The Annals of
Mathematical Statistics 1959.

This scale structure is the same as that of automatic relevance determination (ARD)
[MacKay, 1994]. The intuition is that all outgoing weights from a unit grow or shrink
together in a form of group regularization. DropConnect, which samples noise for
each weight, does not have this structure.

Gal, Yarin, and Zoubin Ghahramani. Dropout as a Bayesian Approximation. ICML 2016.
Huang, Gao, et al. Deep Networks with Stochastic Depth. ECCV 2016.

MacKay, David JC. Bayesian Nonlinear Modeling for the Prediction Competition. ASHRAE Transactions
1994.
Srivastava, Nitish, et al. Dropout. JMLR 2014.

Hierarchical Parametrization:

z~N(0,0%03), a~p(a)




