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Bayesian Inference 101

p(W|X, Y) = p(Y|X,W)p(W)

p(Y|X)

Model likelihood
Prior on model parametersPosterior over the weights

Intractable for DNNs

Marginal Likelihood

Variational Inference

svi reformulates this problem as minimization of the negative evidence
lower bound (or nelbo) under an approximate distribution qθ(W):

qθ̃(W) s.t. θ̃ = arg min
θ

{nelbo}

nelbo = Eqθ [− logp(Y|X,W)] + kl (qθ(W)||p(W))
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Initialization of Variational Bayes? A Motivating Example

• VI struggles to scale on models with millions of parameters
• Initialization of VI has few mentions in current literature

• For the first time: we propose a solution to this issue

Initialization of θ matters
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Iterative-Bayesian Linear Modeling: I-BLM

In a nutshell:

• Grounded on Bayesian Linear regression but extended to
classification and to convolutional layers

• Regression with Gaussian likelihood on transformed labels for
classification tasks

• Scalability achieved thanks to mini-batching

X y X y X y



Experimental Evaluation - Bayesian Neural Networks
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Figure: Test error and mnll with different init. on a 5x100 BNN.



Experimental Evaluation - Bayesian CNN

• Another initialization for Gaussian svi based on a map optimization.
• Models are trained for 100 minutes for the entire end-to-end training
(curves are shifted by the initialization time).
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Good Initializations of Variational Bayes for Deep Models
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Figure 9: Comparison between SVI with Gaussian approximation
and MCD on MNIST and CIFAR10 with LENET-5 and ALEXNET.

Monte Carlo Dropout achieves state-of-art ERROR RATE
but the form assumed by MCD for the posterior is reflected
on an higher MNLL compared to SVI with a Gaussian poste-
rior. Provided with a nontrivial initialization, Gaussian SVI
can better fit the model and deliver a better quantification
of uncertainty.

We report also ERROR RATE and MNLL for SVI with I-
BLM and MCD on ALEXNET (Krizhevsky et al., 2012).
The CNN is composed by a stack of five convolutional lay-
ers and three fully-connected layers for a total of more
than 1M parameters (2M for SVI). In this experiment, we
have experienced the situation in which, due to the over-
parameterization of the model, the NELBO is completely
dominated by the KL divergence. Therefore, the prior has
a large influence on the optimization, so we decided to fol-
low the approach in Graves (2011), allowing for a phase
of optimization of the variances of the prior over the pa-
rameters. The results are reported in Figure 9. Once again,
we show that SVI with I-BLM provides a lower negative
log-likelihood with respect to Bernoulli approximation in
MCD.

Finally, we demonstrate that – provided with a sensi-
ble initialization – even simple factorized Gaussian poste-
rior can achieve state-of-the-art performance on CIFAR10
with VGG162, a large scale CNN (Simonyan & Zisserman,
2014). In this experiment, in addition to MCD, we also
compare with NOISY-KFAC, an approximation of matrix-
variate Gaussian posterior using noisy natural gradients in-
troduced by Zhang et al. (2018). The four models are
trained with a time budget of 100 minutes for the entire
end-to-end training (curves are shifted by the initialization
time). In the cases of Gaussian SVI, we implement a policy
where the KL term is gradually included in the NELBO, sim-
ilarly to Bowman et al. (2016) and Sønderby et al. (2016)

2We implemented the same architecture as in Zhang et al.
(2018)
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Figure 10 & Table 1: Comparison between Gaussian factorized
SVI initialized with I-BLM and with a MAP solution, MCD and
NOISY-KFAC on VGG16 with CIFAR10

(more details in the supplementary material). Results are
shown in Figure 10 and in the adjacent table. Gaussian SVI
with I-BLM delivers state-of-art test MNLL while also pro-
viding a competitive test ERROR RATE.

Extended experimental evaluation We refer the reader
to the supplementary material for additional insights of I-
BLM compared with other initialization methods, analysis
of out-of-sample uncertainty estimation, and tests of cali-
bration properties of deep classifiers.

6 Conclusions
This work fills an important gap in the literature of
Bayesian deep learning, that is how to effectively initialize
variational parameters in SVI. We proposed a novel way
to do so, I-BLM, which is based on an iterative layer-wise
initialization based on Bayesian linear models. Through
a series of experiments, including regression and classifi-
cation with DNNs and CNNs, we demonstrated the ability
of our approach to consistently initialize the optimization
in a way that makes convergence faster than alternatives
inspired from the state-of-the-art in loss minimization for
deep learning.

Thanks to I-BLM, it was possible to carry out an effective
comparison with state-of-the-art methods to carry out ap-
proximate inference for DNNs and CNNs. This suggests
a number of directions to investigate to improve on SVI
and Bayesian CNNs. We found that the choice of the prior
plays an important role in the behavior of the optimization,
so we are investigating ways to define sensible priors for
these models. Furthermore, we are looking into extending
I-BLM to initialize SVI with posterior distributions beyond
Gaussian and to other deep models, such as Deep Gaussian
Processes and Bayesian deep generative models.
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Figure 7: Progression of test ERROR RATE and test MNLL with different initializations on classification problems.

0

0.05

0.1

0.15

0.2

T
E

S
T

E
R

R
O

R
R

A
T

E

MNIST

102 103 104

0

0.2

0.4

STEP
T

E
S

T
M

N
L

L

0.4

0.6

0.8

T
E

S
T

E
R

R
O

R
R

A
T

E

CIFAR10

102 103 104

1

1.2

1.4

1.6

1.8

2

STEP

T
E

S
T

M
N

L
L

I-BLM (this work) MAP ORTHOGONAL LSUV

Figure 8: Progression of test ERROR RATE and test MNLL for
different initializations using LENET-5 on MNIST and CIFAR10.
Note: none of the runs with UNINFORMATIVE, HEURISTIC and
XAVIER converged, so these results are not shown.

Classification with a deep architecture Using the same
deep DNN architecture as in the last experiment (five hid-
den layers with 100 neurons), we tested I-BLM with classi-
fication problems on MNIST (n = 70000, d = 784), EEG
(n = 14980, d = 14), CREDIT (n = 1000, d = 24) and
SPAM (n = 4601, d = 57). Interestingly, with this ar-
chitecture, some initialization strategies struggled to con-
verge, e.g., UNINFORMATIVE on MNIST and LSUV on EEG.
The gains offered by I-BLM achieves are most apparent on
MNIST. After less than 1000 training steps (less than an
epoch), I-BLM makes SVI reach a test accuracy greater than
95%; other initializations reach such performance much
later during training. Even after 100 epochs, SVI inference
initialized with I-BLM provides on average an increase up
to 14% of accuracy at test time. Full results are reported in
the supplementary material.

Experiments on CNNs For this experiment, we imple-
mented a Bayesian version of the original LENET-5 archi-
tecture proposed by LeCun et al. (1998) with two convo-

lutional layers of 6 and 16 filters, respectively and ReLU
activations applied after all convolutional layers and fully-
connected layers. We tested our framework on MNIST and
on CIFAR10. The only initialization strategies that achieve
convergence are ORTHOGONAL and LSUV, along with I-
BLM; the other methods systematically make the optimiza-
tion push the posterior back to the prior. We include a fur-
ther initialization based on the MAP solution. We optimize
the loss for the same amount of time required by I-BLM to
complete the initialization, and we use this solution to ini-
tialize the µ(l)

i,j , while we set log[(σ2)
(l)
i,j ] = −5.5. Figure 8

reports the progression of ERROR RATE and MNLL. For
both MNIST and CIFAR10, I-BLM places the parameters
where the network can consistently deliver better perfor-
mance both in terms of ERROR RATE and MNLL throughout
the entire learning procedure.

Comparison with large scale models and non-Gaus-
sian approximation Monte Carlo Dropout (MCD; Gal &
Ghahramani (2016b)) offers a simple and effective way to
perform approximate Bayesian CNN inference, thanks to
the connection that the Authors have established between
dropout and variational inference. In this experiment, we
aim to compare and discuss benefits and disadvantages of
using a Gaussian posterior approximation with respect to
the Bernoulli approximation that characterizes MCD. For
a fair comparison, we implemented the same LENET-5
architecture and the same learning procedure in Gal &
Ghahramani (2016b)1. In particular, for MNIST, the two
convolutional layers have 20 and 50 filters, respectively.
Dropout layers are placed after every convolutional and
fully-connected layers with a dropout probability of 0.5. To
replicate the results in Gal & Ghahramani (2016b), we used
the same learning rate policy base-lr×(1+ξ×iter)−p

with ξ = 0.0001, p = 0.75, base-lr = 0.01 and weight
decay of 0.0005. Figure 9 shows the learning curves.

1https://github.com/yaringal/
DropoutUncertaintyCaffeModels
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Uninformative The posteriors at each layer are initial-
ized with µ(l)

i,j = 0 and (σ2)
(l)
i,j = 1.

Random Heuristic An extension to commonly used
heuristics with µ(l)

i,j = 0 and (σ2)
(l)
i,j = 1

D
(l)
in

. Because this is

the same as for the prior, this yields an initial KL divergence
in the NELBO equal to zero.

Xavier Normal Originally proposed by Glorot & Bengio
(2010), it samples all weights independently from a Gaus-
sian distribution with zero mean and (σ2)

(l)
i,j = 2

D
(l)
in +D

(l)
out

.

This variance-based scaling avoids issues with vanishing
or exploding gradients. We extend this to SVI by directly
setting µ(l)

i,j = 0 and (σ2)
(l)
i,j = 2

D
(l)
in +D

(l)
out

, given that the

sampling is performed during the Monte Carlo estimate of
the log-likelihood.

Orthogonal Starting from the analysis of learning dy-
namics of DNNs with linear activations, Saxe et al. (2013)
propose an initialization scheme with orthonormal weight
matrices. The idea is to decompose a Gaussian random
matrix onto an orthonormal basis, and use the resulting or-
thogonal matrix for initialization. We adapt this method to
SVI by initializing the mean matrix with the orthogonal ma-
trix and (σ2)

(l)
i,j = 1

D
(l)
in

. In the experiments, we make use

of the PYTORCH QR-decomposition (Paszke et al., 2017).

Layer-Sequential Unit-Variance (LSUV) Starting from
the orthogonal initialization, Mishkin & Matas (2016) pro-
pose a data-driven greedy layer-wise variance scaling of
the weight matrices. We implement Layer-Sequential Unit-
Variance (LSUV) for the means, while the variances are set
to (σ2)

(l)
i,j = 1

D
(l)
in

.
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Figure 5: Progression of test RMSE and test MNLL with different
initializations on a shallow architecture.

5.1 Experiments

Throughout the experiments, we use the ADAM optimizer
(Kingma & Ba, 2015) with learning rate 10−3, batch size
64, and 16 Monte Carlo samples at training time and 128 at
test time. All experiments are run on a server equipped with
two 16c/32t Intel Xeon CPU and four NVIDIA Tesla P100,
with a maximum time budget of 24 hours (never reached).
To better understand the effectiveness of different initializa-
tions, all learning curves are plotted w.r.t. training iteration
rather than wall-clock time.

Regression with a shallow architecture In this experi-
ment we compare initialization methods for a shallow DNN
architecture on two datasets. The architecture used in these
experiments has one single hidden layer with 100 hidden
neurons and ReLU activations. We impose that the approx-
imate posterior has fully factorized covariance. Figure 5
shows the learning curves on the POWERPLANT (n = 9568,
d = 4) and PROTEIN (n = 45730, d = 9) datasets, re-
peated over five different train/test splits. I-BLM allows for
a better initialization compared to the competitors, leading
to a lower root mean square error (RMSE) and lower mean
negative log-likelihood (MNLL) on the test for a given com-
putational budget. We refer the reader to the supplementary
material for a more detailed analysis of the results.

Regression with a deeper architecture Similar consid-
erations hold when increasing the depth of the model, keep-
ing the same experimental setup. Figure 6 shows the pro-
gression of the RMSE and MNLL error metrics when using
SVI to infer parameters of a DNN with five hidden layers
and 100 hidden neurons per layer, and ReLU activations.
Again, the proposed initialization allows SVI to converge
faster than when using other initializations.
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Figure 6: Progression of test RMSE and test MNLL with different
initializations on a deep architecture.
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Bayesian linear regression as before in order to initialize
SVI for DNNs.

The transformation of the labels is based on the formaliza-
tion of a simple intuition, which is the inversion of the soft-
max transformation. One-hot encoded labels are viewed as
a set of parameters of a degenerate Dirichlet distribution.
We resolve the degeneracy of the Dirichlet distribution by
adding a small regularization, say α = 0.01, to the param-
eters. At this point, we leverage the fact that Dirichlet dis-
tributed random variables can be constructed as a ratio of
Gamma random variables, that is, if xi ∼ Gamma(ai, b),
then xi∑

j xj
∼ Dir(a). We can then approximate the

Gamma random variables with log-Normals by moment
matching, which become Gaussian after a logarithm trans-
formation. By doing so, we obtain a representation of the
labels which allows us to use standard regression with a
Gaussian likelihood, and which retrieves an approximate
Dirichlet when mapping predictions back using the soft-
max transformation. As a result, the latent functions ob-
tained represent probabilities of class labels.

The only small complication is that the transformation im-
poses a different noise level for labels that are 0 or 1, and
this is due to the non-symmetric nature of the transforma-
tion. Nevertheless, it is a simple matter to extend Bayesian
linear regression to handle heteroscedasticity; see the sup-
plementary material and Milios et al. (2018) for more in-
sights on the transformation to apply regression on classi-
fication problems.

4.4 Initialization of CNNs

I-BLM can also be applied to CNNs. Convolutional layers
are commonly implemented as matrix multiplication (e.g.
as a linear model) between a batched matrix of patches and
a reshaped filter matrix (Jia, 2014). Rather than using the
outputs of the previous layer as they are, for convolutional
layers each Bayesian linear model learns the mapping from
spatial patches to output features. In Algorithm 1 we sum-
marize a sketch of the proposed method for regression as
well as for classification and convolutional layers.

4.5 General Insights on I-BLM

Previously we claimed that (i) small batches of data are suf-
ficient to solve the Bayesian linear model and that (ii) our
initialization does not incur significant overheads. We now
aim to justify such claims. We initialize a CNN (LENET-5)
on MNIST with an increasing number of samples per batch;
Figure 3(a) shows how test log-likelihood is affected by
this choice. Using the full training set leads to a better es-
timate of the posterior. The mini-batch size affects also the
heterogeneity of the posteriors, which vanishes when us-
ing the full training set. Nonetheless, we show that from
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Figure 3: Comparison of test MNLL after initialization of LENET-
5 for MNIST averaged out of eight successive runs. On the left,
with different batch sizes, on the right with MCD.

64/128 samples the improvement on the test MNLL is only
marginal. The same experiment is also repeated comparing
test MNLL after initialization between SVI with I-BLM and
MCD (Figure 3(b)). Similar comments apply also for this
case: I-BLM allows the training to start from a lower nega-
tive log-likelihood. Finally, Figure 4 reports the test MNLL
after initialization as a function of the time required (or-
ange points correspond to Pareto-optimal points). Before
training, three out of four optimal initializers are I-BLM.

5 Experimental Results
In this section, we compare different initialization algo-
rithms for SVI to prove the effectiveness of I-BLM. We
propose a number of competitors inspired from the litera-
ture developed for loss minimization in DNNs and CNNs.
In the case of CNNs, we also compare with Monte Carlo
Dropout (MCD; Gal & Ghahramani (2016a)) and Natu-
ral Noisy Gradients (NOISY-KFAC; Zhang et al. (2018)),
which represent the state-of-the-art references for infer-
ence in Bayesian CNNs. At layer (l), we choose pri-
ors p(W (l)) =

∏
i,j N (w

(l)
i,j |0, 1

D
(l)
in

), where D
(l)
in de-

notes the number of input features at layer (l), and fo-
cus on fully-factorized variational posteriors q(W (l)) =∏

i,j N (w
(l)
i,j |µ

(l)
i,j , (σ

2)
(l)
i,j); here are the methods that we

compare to initialize µ(l)
i,j and (σ2)

(l)
i,j .
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Figure 2: Visual representation of the proposed method for initialization. In (a) and (b), we learn two Bayesian linear models, whose
outputs are used in (c) to infer the following layer.

4.1 Initialization of DNNs for Regression

In order to initialize the weights of DNNs, we proceed itera-
tively as follows. Before applying the nonlinearity through
the activation function, each layer in a Bayesian DNN can
be seen as multivariate Bayesian linear regression model.
We use this observation as an inspiration to initialize SVI
as follows. Starting from the first layer, we can set the pa-
rameters of q(W (0)) by running Bayesian linear regression
with inputs X and labels Y . After this, we initialize the
approximate posterior over the weights at the second layer
q(W (1)) by running Bayesian linear regression with inputs
X = Φ(XW̃ (0)) and labels Y . Here, Φ(·) denotes the
element-wise application of the activation function to the
argument, whereas W̃ (0) is a sample from q(W (0)). We
then proceed iteratively in the same way up to the last layer.
Figure 2 gives an illustration of the proposed method for a
simple architecture.

The intuition behind I-BLM is as follows. If one layer is
enough to capture the complexity of a regression task, we
expect to be able to learn an effective mapping right af-
ter the initialization of the first layer. In this case, we also
expect that the mapping at the next layers implements sim-
ple transformations, close to the identity. Learning a set of
weights with these characteristics starting from a random
initialization is far from trivial, which also motivated the
work on residual networks (He et al., 2016). Our I-BLM

Algorithm 1: Sketch of the I-BLM Initializer
Inputs : Model M , Dataset D
foreach layer in M do

foreach outfeature in layer do
X,Y ← next batch in D;
propagate X;
XBLM ← output of previous layer;
if layer is convolutional then . ref 4.4

XBLM ← patch extraction(XBLM);
if likelihood is classification then . ref 4.3

var(YBLM)← log [(Y + α)−1 + 1];
mean(YBLM)← log (Y + α)− var(YBLM)/2;

else
YBLM ← Y ;

p(w|X,Y )← BLM(XBLM,YBLM) ; . ref 4.1

q(w)← best approx. of p(w|X,Y ) ; . ref 4.2

initialization takes this observation as an intuition to ini-
tialize SVI for general deep models.

From a complexity point of view, denoting by h(l) the num-
ber of output neurons at layer (l), this is equivalent to h(l)

univariate Bayesian linear models. Instead of using the en-
tire training set to learn the linear models, each one of these
is inferred based on a random mini-batch of data, whose in-
puts are propagated through the previous layers. The com-
plexity of I-BLM is linear in the batch size and cubic in the
number of neurons to be initialized. Later on in this Sec-
tion, we will provide an evaluation of the effect of batch
size and a timing profiling of I-BLM.

4.2 From the Bayesian linear model posterior to the
variational approximation

The proposed I-BLM initialization of variational parame-
ters can be used with any choice for the form of the ap-
proximate posterior. The exact posterior of Bayesian lin-
ear regression is not factorized, so one needs to match this
with the form of the chosen approximate posterior. For
simplicity of notation, let w be the parameters of interest
in Bayesian linear regression for a given output y = Y·i.
We can formulate this problem by minimizing the KL di-
vergence from q(w) to the actual posterior p(w|X,y). In
the case of a fully factorized approximate posterior over
the weights this minimization can be done analytically re-
sulting in the mean being equal to the mean of p(w|X,y)
and the variances (s2i )−1 = Σ−1ii ; see the supplementary
material for the full derivation. Similar results can be also
obtained for different posterior distributions, such as Gaus-
sian posteriors with full or low-rank covariance, or matrix-
variate Gaussian posteriors (Louizos & Welling, 2016).

4.3 Initialization for Classification

In this section we show how our proposal can be extended
to k-class classification problems. We assume a one-hot
encoding of the labels, so that Y is an n×k matrix of zeros
and ones (one for each row of Y ). Recently, it has been
shown that it is possible to obtain an accurate modeling of
the posterior over classification functions by applying re-
gression on a transformation of the labels (Milios et al.,
2018). This is interesting because it allows us to apply
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In the direction of finding richer posterior families for vari-
ational inference, we mention the works on Normalizing
Flows (Rezende & Mohamed, 2015; Kingma et al., 2016;
Louizos & Welling, 2017; Huang et al., 2018). Alternatives
can be found in Stein variational inference (Liu & Wang,
2016), quasi-Monte Carlo variational inference (Buchholz
et al., 2018), variational boosting (Miller et al., 2017), noisy
natural gradients (Zhang et al., 2018) and matrix Gaussian
posterior (Louizos & Welling, 2016).

To the best of our knowledge, there is no study that ei-
ther empirically or theoretically addresses the problem of
initialization of parameters for SVI; we could only find a
mention of this in Krishnan et al. (2018) for variational au-
toencoders. We aim to fill this gap by proposing a novel
way to initialize parameters in SVI for probabilistic deep
models.

3 Preliminaries
In this section we introduce some background material on
Bayesian DNNs and SVI.

Bayesian Deep Neural Networks Bayesian DNNs are
statistical models whose parameters (weights and bi-
ases) are assigned a prior distribution and inferred using
Bayesian inference techniques. Bayesian DNNs inherit the
modeling capacity of DNNs while allowing for quantifica-
tion of uncertainty in model parameters and predictions.
Considering an input x ∈ RDin and a corresponding output
y ∈ RDout , the relation between inputs and outputs can be
seen as a composition of nonlinear vector-valued functions
f (l) for each hidden layer (l)

y = f(x) =
(
f (L−1) ◦ . . . ◦ f (0)

)
(x) . (1)

Let W be a collection of all model parameters (weights and
biases)W (l) at all hidden layers. Each neuron computes its
output as

f
(l)
i = φ(w

(l)>

i f (l−1)) , (2)

where φ(·) denotes a so-called activation function, which
introduces a nonlinearity at each layer. Note that, for sim-
plicity of notation, we absorbed the biases into w

(l)
i .

Given a prior over W, the objective of Bayesian inference
is to find the posterior distribution over all model parame-
ters W using the available input data X = {x1, . . . ,xn}
associated with labels Y = {y1, . . . ,yn}

p(W|X,Y ) =
p(Y |X,W)p(W)

p(Y |X)
. (3)

Bayesian inference for DNNs is analytically intractable and
it is necessary to resort to approximations. One way to re-
cover tractability is through the use of variational inference
techniques as described next.

Stochastic Variational Inference In variational infer-
ence, we introduce a family of distributions qθ(W), pa-
rameterized through θ, and attempt to find an element of
this family which is as close to the posterior distribution of
interest as possible (Jordan et al., 1999). This can be for-
mulated as a KL (Kullback, 1959) minimization problem as
follows:

arg min
θ
{KL [qθ(W)||p(W|X,Y )]} . (4)

Simple manipulations allow us to rewrite this expression
as the negative lower bound (NELBO) to the log-marginal
likelihood of the model (see supplementary material)

NELBO = NLL + KL [qθ(W)||p(W)] , (5)

where the first term is the expected negative log-likelihood
NLL = Eqθ [− log p(Y |X,W)], and the second term acts
as regularizer, penalizing distributions qθ(W) that deviate
too much from the prior; note that the KL term is com-
putable analytically for many choices of prior and approxi-
mate posterior form. When the likelihood factorizes across
data points, we can unbiasedly estimate the expectation
term randomly selecting a mini-batch B ofm out of n train-
ing points, which is suitable for stochastic gradient opti-
mization

NLL ≈ − n
m

∑

x,y∈B
Eqθ [log p(y|x,W)] . (6)

Each term in the sum can be further unbiasedly estimated
using NMC Monte Carlo samples as

Eqθ [log p(y|x,W)] =
1

NMC

NMC∑

i=1

log p(y|x,Wi) , (7)

where Wi ∼ qθ(W). Following Kingma & Welling
(2014), each sample Wi is constructed using the reparam-
eterization trick, which yields a deterministic dependence
of the NELBO w.r.t. θ. Alternatively, it is possible to deter-
mine the distribution of the DNN units f (l)i before activa-
tion from qθ(W). This trick, known as the local reparam-
eterization trick, considerably reduces the variance of the
stochastic gradient w.r.t. θ and achieves faster convergence
(Kingma et al., 2015).

4 Proposed Method
In this section, we introduce our proposed Iterative
Bayesian Linear Model (I-BLM) initialization for SVI. We
first introduce I-BLM for regression with DNNs, and we
then show how this can be extended to classification and
to CNNs.
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terizing the optimization of their parameters (Duchi et al.,
2011; Kingma & Ba, 2015; Srivastava et al., 2014). If this
lack of theory is apparent for optimization of model pa-
rameters, this is even more so for the understanding of the
optimization landscape of the objective in variational in-
ference, where variational parameters enter in a nontrivial
way in the objective (Graves, 2011; Rezende et al., 2014).
Initialization plays a huge role in the convergence of SVI;
the illustrative example in Figure 1 shows how a poor ini-
tialization can prevent SVI to converge to good solutions in
short amount of time even for simple problems. The prob-
lem is even more severe for complex architectures, such as
the ones that we discuss in the experiments; for example,
SVI systematically converges to trivial solutions (posterior
equal to the prior) when applied to CNNs, and we are not
aware of any prior works applying SVI to CNNs.

In this work, we focus on this issue affecting SVI for DNNs
and CNNs. While there is an established literature on
ways to initialize model parameters of DNNs when mini-
mizing its loss (Glorot & Bengio, 2010; Saxe et al., 2013;
Mishkin & Matas, 2016), to the best of our knowledge,
there is no study that systematically tackles this issue for
SVI for Bayesian DNNs and CNNs. Inspired by the litera-
ture on residual networks (He et al., 2016) and greedy ini-
tialization of DNNs (Bengio et al., 2007; Mishkin & Matas,
2016), we propose a novel initialization strategy for SVI
grounded on Bayesian linear modeling, which we call It-
erative Bayesian Linear Modeling (I-BLM). Iterating from
the first layer, I-BLM initializes the posterior at layer (l)
by learning Bayesian linear models which regress from the
input, propagated up to layer (l), to the labels.

We show how I-BLM can be applied in a scalable way and
without considerable overhead to regression and classifica-
tion problems, and how it can be applied to initialize SVI
not only for DNNs but also for CNNs. Through a series
of experiments, we demonstrate that I-BLM leads to faster
convergence compared to other initializations inspired by
prior work on loss minimization for DNNs. Furthermore,
we show that I-BLM makes it possible for SVI with a Gaus-
sian approximation applied to CNNs to compete with Monte
Carlo Dropout (MCD; Gal & Ghahramani (2016b)) and
noisy natural gradients (NOISY-KFAC; Zhang et al. (2018)),
which are state-of-art methods to perform approximate in-
ference for CNNs. In all, thanks to the proposed initializa-
tion, we make it possible to reconsider Gaussian SVI for
DNNs and CNNs as a valid competitor to MCD and NOISY-
KFAC, as well as highlight the limitations of SVI with a
Gaussian posterior in applications involving CNNs.

In summary, in this work we make the following contri-
butions: (1) we propose a novel way to initialize SVI for
DNNs based on Bayesian linear models; (2) we show how
this can be done for regression and classification; (3) we

show how to apply our strategy to CNNs; (4) we empirically
demonstrate that our proposal allows us to achieve perfor-
mance superior to other initializations of SVI inspired by
the literature on loss minimization; (5) for the first time,
we achieve state-of-the-art performance with Gaussian SVI
for large-scale CNNs.

2 Related Work
The problem of initialization of weights and biases in DNNs
for gradient-based loss minimization has been extensively
tackled in the literature since early breakthroughs in the
field (Rumelhart et al., 1986; Baldi & Hornik, 1989). Le-
Cun et al. (2012) is one of the seminal papers discussing
practical tricks to achieve an efficient loss minimization
through back-propagation.

More recently, Bengio et al. (2007) propose a greedy layer-
wise unsupervised pre-training, which proved to help opti-
mization and generalization. A justification can be found
in Erhan et al. (2010), where the authors show that pre-
training can act as regularization; by initializing the param-
eters in a region corresponding to a better basin of attrac-
tion for the optimization procedure, the model can reach a
better local minimum and increase its generalization capa-
bilities. Glorot & Bengio (2010) propose a simple way to
estimate the variance for random initialization of weights,
which makes it possible to avoid saturation both in forward
and back-propagation steps. Another possible strategy can
be found in the work by Saxe et al. (2013), that investi-
gates the dynamics of gradient descend optimization, and
proposes a random orthogonal initialization of the weights
based on the singular value decomposition of a Gaussian
random matrix. Building on this work, Mishkin & Matas
(2016) propose a data-driven weight initialization by scal-
ing the orthonormal matrix of weights to make the variance
of the output as close to one as possible.

Variational inference addresses the problem of intractable
Bayesian inference by reinterpreting inference as an opti-
mization problem. Its origins can be traced back to early
works in MacKay (1992); Hinton & van Camp (1993);
Neal (1997). More recently, Graves (2011) proposes
a practical way to carry out variational inference using
stochastic optimization (Duchi et al., 2011; Zeiler, 2012;
Sutskever et al., 2013; Kingma & Ba, 2015). Kingma &
Welling (2014) propose a reparameterization trick that al-
lows for the optimization of the variational lower bound
through automatic differentiation. To decrease the variance
of stochastic gradients, which impacts convergence speed,
this work is extended using the so-called local reparame-
terization trick, where the sampling from the approximate
posterior over model parameters is replaced by the sam-
pling from the resulting distribution over the DNN units
(Kingma et al., 2015).
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Abstract
Stochastic variational inference is an established
way to carry out approximate Bayesian inference
for deep models flexibly and at scale. While there
have been effective proposals for good initializa-
tions for loss minimization in deep learning, far
less attention has been devoted to the issue of
initialization of stochastic variational inference.
We address this by proposing a novel layer-wise
initialization strategy based on Bayesian linear
models. The proposed method is extensively
validated on regression and classification tasks,
including Bayesian Deep Nets and Conv Nets,
showing faster and better convergence compared
to alternatives inspired by the literature on initial-
izations for loss minimization.

1 Introduction
Deep Neural Networks (DNNs) and Convolutional Neu-
ral Networks (CNNs) have become the preferred choice to
tackle various learning tasks, due to their ability to model
complex problems and the mature development of regu-
larization techniques to control overfitting (LeCun et al.,
2015; Srivastava et al., 2014). There has been a recent
surge of interest in the issues associated with their over-
confidence in predictions, and proposals to mitigate these
(Guo et al., 2017; Kendall & Gal, 2017; Lakshminarayanan
et al., 2017). Bayesian techniques offer a natural frame-
work to deal with such issues, but they are characterized by
computational intractability (Bishop, 2006; Ghahramani,
2015).

A popular way to recover tractability is to use variational
inference (Jordan et al., 1999). In variational inference, an
approximate posterior distribution is introduced and its pa-
rameters are adapted by optimizing a variational objective,
which is a lower bound to the marginal likelihood. The
variational objective can be written as the sum of an expec-
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Figure 1: Due to poor initialization (left) SVI fails to converge
even after 600+ epochs (RMSE = 0.613, MNLL = 29.4) while
with our I-BLM (right) SVI easily recovers the function after few
epochs (RMSE = 0.315, MNLL = −5.8). The architecture has
three hidden layers with 500 neurons each, and uses the TANH
activation function.

tation of the log-likelihood under the approximate posterior
and a regularization term which is the negative Kullback-
Leibler (KL) divergence between the approximating distri-
bution and the prior over the parameters. Stochastic Vari-
ational Inference (SVI) offers a practical way to carry out
stochastic optimization of the variational objective. In SVI,
stochasticity is introduced with a doubly stochastic approx-
imation of the expectation term, which is unbiasedly ap-
proximated using Monte Carlo and by selecting a subset of
the training points (mini-batching) (Graves, 2011; Kingma
& Welling, 2014).

While SVI is an attractive and practical way to perform ap-
proximate inference for DNNs, there are limitations. For
example, the form of the approximating distribution can
be too simple to accurately approximate complex poste-
rior distributions (Ha et al., 2016; Ranganath et al., 2015;
Rezende & Mohamed, 2015). Furthermore, SVI increases
the number of optimization parameters compared to op-
timizing model parameters through, e.g., loss minimiza-
tion; for example, a fully factorized Gaussian posterior
over model parameters doubles the number of parameters
in the optimization compared to loss minimization. This
has motivated research on other ways to perform approx-
imate Bayesian inference for DNNs by establishing con-
nections between variational inference and dropout (Gal &
Ghahramani, 2016a;b; Gal et al., 2017).

A theoretical understanding of the optimization landscape
of DNNs and CNNs is still in its early stages of develop-
ment (Dziugaite & Roy, 2017; Garipov et al., 2018), and
most works have focused on the practical aspects charac-
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