Generative Modeling of Infinite Occluded Objects for Compositional Scene Representation

Jinyang Yuan, Bin Li, Xiangyang Xue

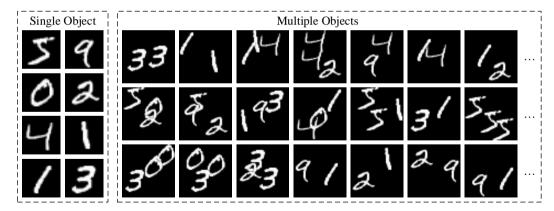
Fudan University

{yuanjinyang, libin, xyxue}@fudan.edu.cn

Jun 12, 2019

Compositional Scene Representation

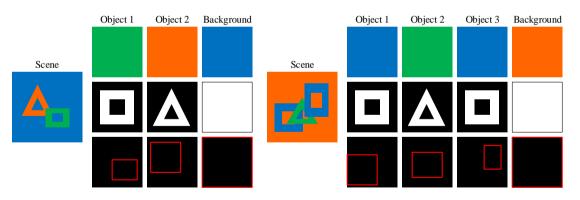
- Scenes are composed of objects and background
- The combinations of objects and background are diverse
- A single representation for the entire scene is relatively complex



Compositional Scene Representation

Compositional scene representation is desirable

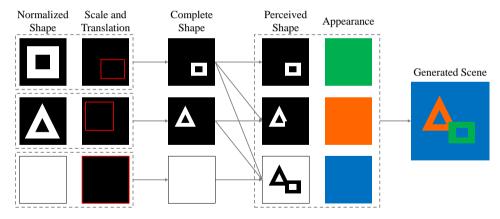
- Lower representation complexity
- Higher **generalizability** to novel scenes



Generative Modeling of Infinite Occluded Objects

Two major difficulties

- The number of objects is unknown
- The perceived objects may be incomplete due to occlusions



Generative Modeling of Infinite Occluded Objects

Background: k = 0, Objects: $k \ge 1$

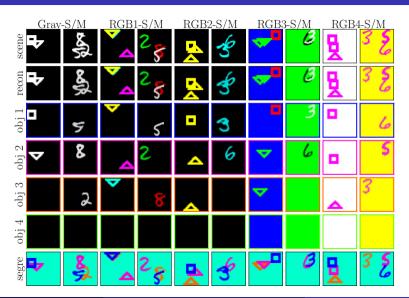
Latent Representation	$oldsymbol{s}_{\cdot k} \sim \mathcal{N}\left(ilde{oldsymbol{\mu}}, \mathrm{diag}(ilde{oldsymbol{\sigma}}^2) ight),$	$k \ge 0$
Presence (number of objects)	$\nu_k \sim \text{Beta}(\alpha, 1), z_k^{\text{ind}} \sim \text{Ber}\left(\prod_{k'=1}^k \nu_{k'}\right),$	$k \ge 1$
Complete Shape	$z_{n,k}^{\mathrm{dep}} \sim \mathrm{Ber}\left(f_{\mathrm{stn}}(\underline{f_{\mathrm{shp}}}(s_{\cdot k}^{\mathrm{shp}}), \underline{s_{\cdot k}^{\mathrm{stn}}})_{n}\right),$	$k \ge 1$
	normalized shape scale and translation	
Perceived Shape (occlusions)	$\rho_{n,k} = \begin{cases} z_k^{\text{ind}} z_{n,k}^{\text{dep}} \prod_{k'=1}^{k-1} \left(1 - z_{k'}^{\text{ind}} z_{n,k'}^{\text{dep}} \right), \\ 1 - \sum_{k'=1}^{\infty} \rho_{n,k'}, \end{cases}$	$k \ge 1$ $k = 0$
Appearance	$m{a}_{n,k} = egin{cases} f_{\mathrm{apc}}^{\mathrm{obj}}(m{s}_{.k}^{\mathrm{apc}}), \ f_{\mathrm{apc}}^{\mathrm{back}}(m{s}_{.k}^{\mathrm{apc}}), \end{cases}$	$k \ge 1$ $k = 0$
Generated Scene	$oldsymbol{x}_n \sim \sum_{k=0}^{\infty} ho_{oldsymbol{n},k} \mathcal{N}(oldsymbol{a}_{n,k}, \hat{\sigma}^2 oldsymbol{I})$	

Variational Inference

- Parameters are inferred by long short-term memories (LSTMs)
- Each object and background are updated sequentially and iteratively
- The LSTMs imitate the procedure of coordinate ascent

$$\begin{split} q(\boldsymbol{h}|\boldsymbol{x}) &= q(\boldsymbol{s}_{\cdot 0}^{\mathsf{apc}}) \prod_{k=1}^K \left(q(\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) q(\boldsymbol{s}_{\cdot k}^{\mathsf{shp}}|\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) q(\boldsymbol{s}_{\cdot k}^{\mathsf{apc}}|\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) q(\nu_k|\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) q(z_k^{\mathsf{ind}}|\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) \prod_{n=1}^N q(z_{n,k}^{\mathsf{dep}}|\boldsymbol{s}_{\cdot k}^{\mathsf{shp}},\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) \right) \\ q(\boldsymbol{s}_{\cdot k}^*|\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) &= \mathcal{N}(\boldsymbol{s}_{\cdot k}^*;\boldsymbol{\mu}_{\cdot k}^*,\mathrm{diag}(\boldsymbol{\sigma}_{\cdot k}^{*^2})) \\ q(\nu_k|\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) &= \mathrm{Beta}(\nu_k;\tau_{1,k},\tau_{2,k}) \\ q(z_k^{\mathsf{ind}}|\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) &= \mathrm{Ber}(z_k^{\mathsf{ind}};\zeta_k) \\ q(z_{n,k}^{\mathsf{dep}}|\boldsymbol{s}_{\cdot k}^{\mathsf{shp}},\boldsymbol{s}_{\cdot k}^{\mathsf{stn}}) &= \mathrm{Ber}(z_{n,k}^{\mathsf{dep}};\xi_{n,k}) \end{split}$$

Experimental Results



Experimental Results

Table: Comparison of segregation and counting performance with existence of occlusion.

Data set	N-EM AMI	Greff et al MSE	, 2017] OCA	AIR [Es	slami et al MSE	l., 2016] OCA	AMI	Proposed MSE	OCA
Gray-S Gray-M	77.3% 30.5%	10e-3 22e-3	56.2% $13.5%$	85.4% 62.8%	6.5e-3 9.0e-3	80.9% 66.0%	94.6% 71.1%	2.9 e-3 7.5 e-3	90.5% 77.6%
RGB1-S RGB1-M	81.8% 57.0%	5.6e-3 9.4e-3	74.2% $16.3%$	95.3% 78.2%	2.4e-3 3.5e-3	88.8% 67.9%	98.3% 82.0%	1.1e-3 3.1e-3	95.1% $74.8%$
RGB2-S RGB2-M	66.2% 34.9%	9.0e-3 13e-3	60.8% $12.5%$	85.7% 64.1%	3.7e-3 4.8e-3	84.4% 69.8%	92.3% 67.9%	2.2 e-3 4.7 e-3	$86.3\% \\ 71.0\%$
RGB3-S RGB3-M	29.6% 15.4%	21e-3 22e-3	7.44% $2.30%$	91.3% 67.5%	3.9e-3 5.4e-3	90.3% 60.5%	97.4% 77.9%	1.4e-3 3.8e-3	$92.5\% \\ 68.6\%$
RGB4-S RGB4-M	24.7% $3.82%$	20e-3 32e-3	10.3% $2.35%$	86.7% 56.9%	4.0e-3 6.3e-3	78.3% $58.2%$	90.7% 67.9%	2.5 e-3 4.6 e-3	$83.3\% \\ 77.3\%$

References

Eslami, S., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K., and Hinton, G. E. (2016).

Attend, infer, repeat: Fast scene understanding with generative models. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 3225–3233.

Greff, K., van Steenkiste, S., and Schmidhuber, J. (2017).

Neural expectation maximization.

In Advances in Neural Information Processing Systems (NeurIPS), pages 6691–6701.

Thank You!