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Introduction

Anomaly Detection is needed when a subset of classes is
extremely rare or some classes are unknown at training time.

Typically: Learn to approximate “normal” data distribution and
measure deviation at test time.

However:

Images inputs are high-dimensional - capturing the complete data
density is difficult and data-intensive

In autoencoders, blurry reconstructions have the highest likelihood.
But blurry images are also anomalies!
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Capture multiple data modes with
Multi-hypotheses-networks
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Adversarial regularizer
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Anomaly detection with multiple hypotheses
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Anomaly detection with multiple hypotheses
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Experimental Results

Table 2. Anomaly detection on CIFAR-10, performance measured
in AUROC. Each class is considered as the normal class once
with all other classes being considered as anomalies, resulting in
10 one-vs-nine classification tasks. Performance is averaged for
all ten tasks and over three runs each (see Appendix for detailed
performance). Our approach significantly outperforms previous
non-Deep Learning and Deep Learning methods.

TYPE MODELS
OC-5VM-
NON-DL. KDE-PCA PCA IF GMM
59.0 61.0 35.8 58.5
OC-D-

DL ANOGAN svpp  ADGAN CONAD
61.2 63.2 62.0 67.1
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Table 6. Anomaly detection performance and their standard vari-
ance on the Metal Anomaly dataset. To reduce noisy residuals
due to the high-dimensional input domain, only 10% of maximally
abnormal pixels with the highest residuals are summed to form the
total anomaly score. AUROC is computed on an unseen test set, a
combination of normal and anomaly data. For more detailed results
see Appendix. The anomaly detection performance of plain MHP
rapidly breaks down with an increasing number of hypotheses.

HYPOTHESES
MODEL 1 2 4 8
MHP 04.2 08.0(0.5) 97.0(1.0) 95.0(0.2)
MHP+WTA (1 'Li'} 08.0(0.9) 98.0(0.1) 94.6(3.3)

MDN 90.0(1.1) 91.0(1.9) 91.6(3.5)

MDN+GAN 93.6 94.2(1.6) 91.3(1.9) 94.3(1.1)
CONAD (0.7) 98.5(0.1) 97.7(0.5) 96.5(0.2)
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Introduction

Anomaly Detection is needed when a subset of classes is
extremely rare or some classes are unknown at training
time.

Typically: Leam to approximate “normal” data distribution
and measure deviation at test ime.

However:

Images inputs are high-dimensional - capturing the
complete data density is difficult and data-intensive

In autoencoders, blurry reconstructions have the highest
likelihood. But blurry images are also anomalies!
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Our approach

* We propose the use of multiple-hypotheses networks(MHP)
(Rupprecht et al., 2016; Chen & Koltun, 2017; lig et al., 2018;
Bhattacharyya et al., 2018) for anomaly detection

* It provides a more fine-grained description of the data distribution than
with a single-headed network.

We identify and address fake-data-support of MHP-techniques, which
make them unsuitable for anomaly detection.

Solution: ConAD in combination with a discriminator as a solution to
avoid support of non-exi data regi and amplify the
coverageofrealdatamodes.
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We propose an anomaly-detection approach that combines modeling the
foreground class via multiple local densities with adversarial training. it
results in significantly better anomaly detection performance.
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