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Introduction

➢ Classic Deep CNN

➢ Transfer Learning
• Few-Shot Learning
• One-Shot Learning

• Zero-Shot Learning
(ZSL)
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Bias Problem

Existing Embedding Models for GZSL 

• Visual Space

to Semantic Space

• Visual & Semantic Space

to a Latent Space

• Semantic Space

to Visual Space

Bias Problem

Unseen samples are easily 

classified into similar seen classes.

e.g.  Zebra → Horse
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Our Model
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➢ Co-Representation Network (CRnet)

1. A cooperation module for visual feature representation (our main contribution).

2. A pre-trained CNN (Resnet-101) for feature extraction.

3. A relation module for similarity output, i.e. the classification. 
(Sung, Flood , et al. "Learning to Compare: Relation Network for Few-Shot Learning."  CVPR 2018.)



➢ Initialization Algorithm

Perform K-means Clustering on the 
semantic space.

Semantic vectors:   

Clustering center:

Expert module k:  

➢ Cooperation Module

Sum the outputs of expert modules.

Algorithm

Single layer perceptron
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➢ Relation Module

Concatenate feature anchor      (output 
of cooperation module) and image feature 
v   as the input.

Tow-layer perceptron with Sigmoid.

Ground-truth:

• When the model converges, cooperation 
module divides the semantic space into 
several parts. 

• Semantic vectors located in different 
parts are projected by several different 
expert modules.
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➢ Training

Objective function: 

End-to-end manner.
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Benchmark Results



Analysis

➢ Bias Problem

Unseen anchors distribute too close to 
seen anchors in the embedding space used 
for classification.

Serious bias problem      Slight bias problem  

Visual Embedding Space Visual Embedding Space

➢ Local Relative Distance (LRD)

We propose the LRD as a metric for bias problem.

,

Larger LRD means a more uniform embedding space, i.e. 
slighter bias problem.

1-d semantic space to 1-d visual embedding space:

fG: General fitting curve; fCR: Fitting curve of CRnet

S: semantic space; V: visual embedding space.

• High local linearity results in larger LRD.

• Cooperation module actually learns a 
piecewise linear function of K+1 pieces 
with high local linearity



Contrast Experiments

➢ Relation Network (RN)

A two-layer perceptron instead of cooperation module is used. 

(Sung, Flood , et al. "Learning to Compare: Relation Network for Few-Shot Learning."  CVPR 2018.)
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Contrast Experiments

➢ Results

Compared with RN, CRnet achieves:

• More Sparse and Discriminative Features

• More Uniform Embedding Space (Larger LRD)
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• Slighter Bias Problem

Figure. Bar chart of per-class Bias Rate and per-class Error Rate of RN and CRnet on AwA2. 

Bias Rate: The rate in % of misclassification into the closest seen class; Error Rate: Per-class 

classification Error Rate in %.



Summarize

➢ Co-representation network

• Decomposition method for projecting semantic space to visual 
embedding space.

• Cooperation module for representation and learnable relation module 
for classification.

✓ Training in an end-to-end manner.

✓ Slighter bias problem leads to a good performance on GZSL.

Other advantages:

✓ Simple structure with high expandability.

✓ No need for semantic information of unseen classes during training 
(compared with generative models)
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