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Motivation
1

Policy Search (PS): very effective RL technique for continuous control tasks

[Heess et al., 2017] [OpenAI, 2018] [Vinyals et al., 2017]

High sample complexity remains a major limitation

Samples available from several sources are discarded

Different policies
Different environments

 Transfer of Samples

Tirinzoni et al. Transfer of Samples in Policy Search via Multiple Importance Sampling ICML 2019



Motivation
1

Policy Search (PS): very effective RL technique for continuous control tasks

[Heess et al., 2017] [OpenAI, 2018] [Vinyals et al., 2017]

High sample complexity remains a major limitation

Samples available from several sources are discarded

Different policies
Different environments

 Transfer of Samples

Tirinzoni et al. Transfer of Samples in Policy Search via Multiple Importance Sampling ICML 2019



Motivation
1

Policy Search (PS): very effective RL technique for continuous control tasks

[Heess et al., 2017] [OpenAI, 2018] [Vinyals et al., 2017]

High sample complexity remains a major limitation

Samples available from several sources are discarded

Different policies
Different environments

 Transfer of Samples

Tirinzoni et al. Transfer of Samples in Policy Search via Multiple Importance Sampling ICML 2019



Transfer of Samples
2

Source TaskM1

Source TaskM2

Source TaskMm

Target TaskM

πθ,P

τi,1 ∼ πθ1 ,P1

τi,2 ∼ πθ2 ,P2

τi,m ∼ πθm ,Pm

Existing works: batch value-based settings [Lazaric et al., 2008, Taylor et al., 2008,

Lazaric and Restelli, 2011, Laroche and Barlier, 2017, Tirinzoni et al., 2018]

Extension to online PS algorithms not trivial
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Transferring Samples in Policy Search
3

Goal: Transfer source trajectories to improve the target gradient estimation

Multiple Importance Sampling (MIS) Gradient Estimator

∇MIS
θ J(θ) :=

1

n

m∑
j=1

nj∑
i=1

w(τi,j)︸ ︷︷ ︸
weights

gθ(τi,j)︸ ︷︷ ︸
gradient

w(τ ) :=
p(τ |θ,P)∑m

j=1 αjp(τ |θj ,Pj)

Unbiased and bounded weights

Easily combined with other variance reduction techniques

Effective sample size ≡ Transferable knowledge → Adaptive batch size

Provably robust to negative transfer
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Estimating the Transition Models
4

Problem: P unknown → Importance weights cannot be computed
Solution: Online minimization of an upper-bound to the expected MSE of ∇MIS

θ J(θ)

Obtain principled estimates even without target samples

Can be efficiently optimized for

Discrete set of models
Reproducing Kernel Hilbert Spaces (RKHS) → Closed-form solution
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Empirical Results
5
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Good performance with both known and unknown models

Very effective sample reuse from different policies but same environment
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Thank you!
6

andrea.tirinzoni@polimi.it

https://github.com/AndreaTirinzoni/

Meet us at poster #118 @ Pacific Ballroom
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