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Introduction

Off-Policy Evaluation –
We wish to estimate the value of a sequential decision making evaluation policy
from batch data, collected using a behavior policy we do not control



Introduction

Model Based vs. Importance Sampling –
Importance sampling methods provide unbiased estimates of the value evaluation 
policy, but tend to require a huge amount of data to achieve reasonably low 
variance. When data is limited, model based methods tend to perform better.

In this work we focus on improving model based methods.



Combining multiple models

Challenge: Hard for one model to be good enough for the entire 
domain.

Question: If we had multiple models, with different strengths, could we 
combine them to get better estimates?

Approach: Use a planner to decide when to use each model to get the 
most accurate reward estimate over entire trajectories.



Balancing short vs. long term accuracy
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Balancing short vs. long term accuracy
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Closely related to bound in - Asadi, Misra, Littman. “Lipschitz Continuity in Model-based Reinforcement Learning.” (ICML 2018).



Planning to minimize the estimated return 
error over entire trajectories
We use Monte Carlo Tree Search (MCTS) planning algorithm to 
minimize the return error bound over entire trajectories.
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Parametric vs. Nonparametric Models

Nonparametric models –
Predicting the dynamics for a given state-action pair based on similarity to 
neighbors.
Nonparametric models can be very accurate in regions of state space where data 
is abundant.

Parametric Models –
Any parametric regression model or hand coded model incorporating domain 
knowledge.
Parametric models will tend to generalize better to situations very different from 
the ones observed in the data.



Estimating bounds on model errors
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Estimating bounds on model errors
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Performance on medical simulators
Cancer : HIV :

• MCTS-MoE tends to outperforms both the parametric and nonparametric models
• With access to the true model errors, the performance of the MCTS-MoE could be 

improved even further
• For these domains, all importance sampling methods result in errors which are 

order of magnitudes larger than any model based method



Summary and Future Directions

• We provide a general framework for combining multiple models to 
improve off-policy evaluation.

• Improvements via individual models, error estimation or combining 
multiple models.
• Extension to stochastic domains is conceptually straight-forward but 

requires estimating distances between distributions rather than 
states.
• Identifying particularly loose or tight error bounds.




