Provably Efficient Maximum Entropy Exploration

Elad Hazan, Sham Kakade, Karan Singh, Abby Van Soest

Motivation

Task Agnostic Exploration

[Lee et. al '19, Fu et. al 2018, ...]

Phase 1: Reward-free interactions.

Phase 2: A suite of tasks (with reward).

An exploration policy given a prior $P^*(s)$?

$$\max_{\pi} \{ -KL(d_{\pi} || P^*(s)) \} -$$

Curiosity & Exploration Bonus

[Pathak et. al '17, Bellemare et. al '16, Tang et. al '17...]

Novelty-based exploration bonus.

$$\max_{\pi} \{ E_{d_{\pi}(s)}[R(s) - \log d_{\pi}(s)] \}$$

 $d_{\pi}(s)$ is the state distribution under policy π .

Other Formulations: Downstream task efficiency, Option discovery, Sparse rewards.

No Reward Signal.

Question: What is the agent capable of?

$$\max_{\pi} \{ H(d_{\pi}) = -\sum_{s} d_{\pi}(s) \log d_{\pi}(s) \}$$

Not a scalar reward function.

How to solve this efficiently?

The Setting

- π induces a distribution over states.
 - $d_{\pi}(s) = (1 \gamma)(P(s_0 = s | \pi) + \gamma P(s_1 = s | \pi) + \gamma^2 P(s_2 = s | \pi) + \dots)$
- A policy class Π (infinite).
- Concave functional H, acting on the state distribution.

$$\max_{\pi\in\Pi}H(d_{\pi})$$

Proposition

 $H(d_{\pi})$ is not concave in π .

A Reductions-based Approach:

Reward-based Planning Oracle: Given r, output π with $V_{\pi} \geq \max_{\pi} V_{\pi} - \varepsilon$.

Density Estimation: Given π , output an estimate d'_{π} so that $|d'_{\pi} - d_{\pi}|_{\infty} \leq \varepsilon$.

The MaxEnt Algorithm

Concept: Uniform Mixture of Policies $C = (\pi_1, ..., \pi_k)$.

Initialization: Start with a 1-policy mixture.

For
$$t = 0, ... T-1 do$$

1. DensityEst(
$$mix_t$$
).

$$2. r_t(s) = \frac{dH(X)}{dX} \Big|_{X=} = -(\log d_{\pi}(s) + 1).$$

- 3. Compute $\pi_{t+1} = ApproxPlan(r_t, \varepsilon)$.
- 4. Update the *uniform* mixture to include π_{t+1} .

Estimate State Distribution:

Given π , output d'_{π} so that $|d'_{\pi} - d_{\pi}|_{\infty} \leq \varepsilon$.

Reward-based Planning Oracle:

Given r, output π with $V_{\pi} \geq \max_{\pi} V_{\pi} - \varepsilon$.

Interpret as Conditional Gradient Descent.

Result

Main Theorem

For concave, β -smooth R(X), ie. $|\nabla^2 R(X)| \leq \beta$, the algorithm guarantees

$$H(d_{mix}) \ge \max_{\pi \in \Pi} H(d_{\pi}) - \varepsilon,$$

As long as

$$T \ge \beta \varepsilon^{-1}$$

Corollary (Entropy)

For the entropy objective, tle algorithm needs to run for $T \geq S\varepsilon^{-2}$ steps.

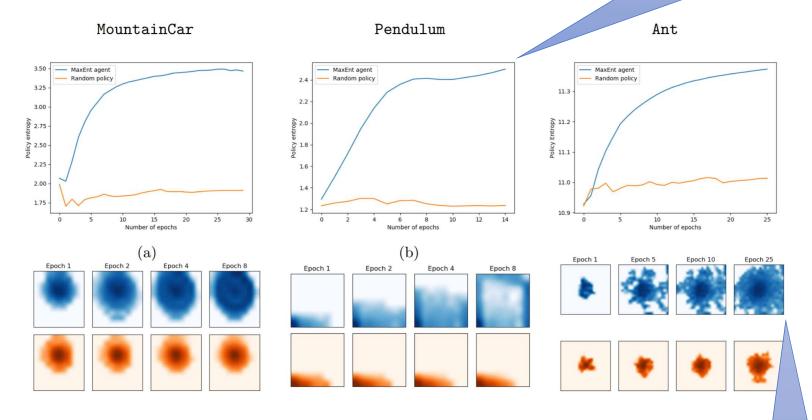
Corollary (Finite MDP; No Oracles)

 $O(S^2A)$ samples suffice to implement the oracles across all iterations.

Prelim. Experiments

Entropy vs. Iterations:

Entropy saturates in a few iterations of the algorithm.



Objective: $\min_{\pi} KL(Unif||d_{\pi})$

Simple, count-based **Density Estimator** (+rand proj).

Planning: Policy Gradient / Actor Critic

State Coverage:

Visits all reachable states in a few iterations.

Pacific
Ballroom
#115

The Take-away

Optimize
Functions of
State Distribution
via
Blackbox RL
algorithms.