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Distributional Reinforcement Learning
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Distributional RL aims to learn
full return distributions.
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Return distribution:;
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Distributional Bellman equation:
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Distributional Reinforcement Learning

In practice, we often work with parametric approximate distributions.
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Distributional Reinforcement Learning

In practice, we often work with parametric approximate distributions.
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Main Contribution: An Alternative Perspective

Distributional RL algorithms learn statistical functionals of the return distribution.

e Moments, tail probabilities,
expectations, etc.
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Theory: What properties of return =
distributions can be learnt through \

dynamic programming?

Algorithmic: A general framework for
approximate learning of statistics.
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A General Framework for Distributional RL Algorithms

Current statistics Bellman-updated statistics
- _
e ! e e 4 o
p Imputation strategy . X S9 A
\ : Vi S]. i SK
\ v / \ ] ,l
| ¥ \ /

bl =

Imputed samples Z T Bellman-updated distribution

@ DeepMind Statistics and Samples in Distributional Reinforcement Learning — MARK ROWLAND



A General Framework for Distributional RL Algorithms

Current statistics Bellman-updated statistics
- _
= ! " % 4 e
p Imputation strategy . X S9 A
\ : Vi S 1 i SK
\ v / \ | ,l
| ¥ N y

bl =

Imputed samples Z T Bellman-updated distribution

@ DeepMind Statistics and Samples in Distributional Reinforcement Learning — MARK ROWLAND



A General Framework for Distributional RL Algorithms

Current statistics Bellman-updated statistics
- _
e ! e e 4 o
p Imputation strategy . X S9 A
\ : Vi S 1 i SK
\ v / \ ] ,l
| ¥ \ /

bl =

Imputed samples Z T Bellman-updated distribution

@ DeepMind Statistics and Samples in Distributional Reinforcement Learning — MARK ROWLAND



A General Framework for Distributional RL Algorithms

Current statistics Bellman-updated statistics
- _
e ! e e 4 o
p Imputation strategy . X S9 A
\ : Vi S]. i SK
\ v / \ ] ,l
| ¥ \ /

bl =

Imputed samples Z T Bellman-updated distribution

@ DeepMind Statistics and Samples in Distributional Reinforcement Learning — MARK ROWLAND



A General Framework for Distributional RL Algorithms

Current statistics Bellman-updated statistics
- _
e ! e e 4 o
p Imputation strategy . X S9 A
\ : Vi S]. i SK
\ v / \ ] ,l
| ¥ \ /

bl =

Imputed samples Z T Bellman-updated distribution

@ DeepMind Statistics and Samples in Distributional Reinforcement Learning — MARK ROWLAND



A General Framework for Distributional RL Algorithms

Current statistics Bellman-updated statistics
- _
= ! " % 4 e
p Imputation strategy . X S9 A
. | 3 S1 : SK
\ * 4 | | ,I
‘ ’ \\ 4

bl =

Imputed samples Z T Bellman-updated distribution

@ DeepMind Statistics and Samples in Distributional Reinforcement Learning — MARK ROWLAND



Application: Expectiles

We apply this framework to learn
expectiles of return distributions.

New deep RL agent: Expectile
Regression DQN (ER-DQN), with
improved mean performance on
Atari-57 relative to QR-DQN.
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Summary

A new perspective on distributional RL
Theoretical progress on what it is possible to learn

A general framework for distributional RL algorithms
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