

Secure Exploration in Reinforcement Learning

Mehdi Fatemi
Shikhar Sharma
Harm van Seijen
Samira Ebrahimi Kahu

What is a dead-end?

- A <u>terminal state</u> is called <u>undesired</u> if it prevents achieving maximum return.
- A state s_d is called a dead-end if all the trajectories starting from s_d reach an undesired terminal state with probability 1 in some finite (possibly random) number of steps.

NOTE:

- Undesired terminal states are assumed to be signaled when entered.
- NO such assumption can be made for dead-ends.
- Dead-ends may exist far before undesired terminals.

Problem? (why should we care?)

- ☐ Just use standard RL algorithms?
- If the state-space includes many dead-ends and the positive rewards are distant from initial states, then <u>exploration</u> will become a large obstacle.

What do we need?

Security Condition:

A policy η is secure if for any $\lambda \in [0,1]$ the following condition holds:

$$\sum_{s' \in \mathcal{S}_{\mathcal{D}}} T(s, a, s') \ge 1 - \lambda \quad \Rightarrow \quad \eta(s, a) \le \lambda$$

A Solution

Make a new MDP (called exploration MDP) similar to the original MDP but with the following:

- 1. $r_e = -1$ if enter an <u>undesired terminal state</u> and $r_e = 0$ otherwise.
- 2. No discount: $\gamma_e = 1$

Let q_e^* be the optimal value function of \mathcal{M}_e , Let further η be any arbitrary policy that satisfies the following:

$$\eta(s,a) \le 1 + q_e^*(s,a) \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}$$

where $q_e^*(s,.) \neq -1$ at least for one action. Then η is secure.

Some Results

Dead-ends and **Secure Exploration** in Reinforcement Learning

6:30 -- 09:00 PM

Room: Pacific Ballroom

@mefatemi aka.ms/fatemi

#112

