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Motivations

o | DA (r(Se, Ar) + aH(n(-|Se))

t>0

@ Many recent (deep) RL algorithms make use of regularization
(SAC, soft Q-learning, DPP, TRPO, MPO, etc.).

@ They share the use of regularization, but are derived from
different principle, consider specific regularization, and have
ad-hoc analysis, if any.

@ This work, generalizes in two directions:

o larger class of regularizers,
o the general modified policy iteration scheme.

@ Allows for a general theoretical analysis, suggests new
algorithmic schemes.
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Background
Unregularized MDPs
Legendre-Fenchel transform

@ Bellman evaluation operator
Vs € S, [Trvl(s) = Eaun(ys) [r(s;a) + 1Essa[v(s)]] -
For short, T,v = ry +vP,v. For any v, we associate
q(s,a) = r(s,a) + Vg5 a[v(s)]-

We'll write [T v](s) = (n(+]s), q(s,)) = (7s, gs). With a
slight abuse of notation, T,v = (7, q) = ((7s, gs))ses-
@ Bellman optimality operator

T.v=max T v.
s

@ greedy operator

7 €G(v) e T.v= Tuv e ' €argmax Trv.
™

@ From T, get T, and G, and then PI, VI, MPI... RL!
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Background
Unregularized MDPs
Legendre-Fenchel transform

Let Q: A4 — R be a strongly convex function. The convex
conjugate is (here) a smoothed maximum

Vgs € RA, Q*(gs) = max (ms, gs) — Q(7s).
TsEA 4

a=(3,4,1)

hard-maximum soft-maximum
m=(0,1,0) m =(0.25, 0.7, 0.05)
Q"(q) =4 0*(q)=4.35
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Background
Unregularized MDPs
Legendre-Fenchel transform

° Negative Shannon entropy:

Zﬂ's YInms(a), Q%(qs) |nZequs

« \_ expgs(a)
VE(a) = > pexp gs(b)

o Kullback-Leibler divergence

Ts) :Zws(a)ln ZZEZ;, Q* (gs) |“ZM5 a)exp gs(a)

. ps(a) exp gs(a)
Vi(as) = > ts(b) exp gs(b)

@ Tsallis entropy
1
Q(ms) = S(lImslz = 1)-
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Regularized MDPs Regularized Bellman operators
Regularized value functions

Core idea

@ Regularize the Bellman evaluation operator

[Travl(s) = (7s, qs)—2(7s)
= [Txv](s)—Q(7s).

@ From this, regularized Bellman optimality operator,
regularized greediness, regularized dynamic programming,
then regularized RL.



Regularized MDPs Regularized Bellman operators

Regularized value functions

@ Evaluation, optimality, greediness:

Tra:veERS = T qv=T,v—Q(r) € R,
T.o:ve RS — T.qv= max Trqv=0Q%q)€ RS,
WEAi
x = gQ(V) — VQ*(q) o= TﬂgQV = T*,QV.
@ The regularized Bellman operators satisfy the same properties
as the original ones:
o T, q is affine.

e Monotonicity, distributivity and y-contraction of T, o and
Teq.
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Regularized MDPs Regularized Bellman operators
Regularized value functions

@ Reg. value functions are fixed-points of the reg. operators,

gra(s,a) = r(s,a) + VEg s a[vra(s)]

with vy o(s) = NW(_|S)[q7r79(s, a)] — Q(=(.]s)).
)
)

Qx, Q( a ( a) + 7E5’|s,a[v*,ﬂ(5/)]
with v, o(s) = Q*(q«.a(s, .))-

@ The (unique) optimal policy is greedy resp. to v, q,

Vi, 0.2 = VeQ > Voo With T 0 = Ga(via)

@ However, the MDP's solution is biased by the regularizer.
Assuming that Lo < Q < Uqg,
Ug—1L
V*_M S V7T*Q S Vi.
1—7x k
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Related algorithms
Regularized MPI Analysis

Tk+1 = Ga(vk)

Virr = (Trn.0) ™ vk

o With m =1, we get regularized VI, that can be simplified as
Vkt1 = TeqVvk (as Ti41 is greedy resp. to vk, we have
Trenovk = Tuovi)-

o With m = oo, we get regularized PI, that can be simplified as
Tk+1 = Ga(vr, a) (indeed, with a slight abuse of notation,
(Tre2) Vi1 = V)
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Related algorithms
Regularized MPI Analysis

J(0) =B |(& — qo(si, a))*| with G = r; + 72" (a5(s}. ).

Ifm>1,
@ evaluation step, m=1
J(0) = E[(Gi—qo(si, :))*] with & = ri+v(EBawn(js)lqa(s], )] -Qr (-, s))

@ evalution step, m > 1, either m-step rollouts or solve m regressions
(keeping 7 fixed)

@ greedy step
J(w) = B [Barm,(1sak(si, 8)] = Qmw (-]s))]
or J(w) = E[KL(mw ()| V2" (ak(si, )]

Soft Q-learning, SAC, DPP, MPO, TRPO are (variations of) these recipes
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Related algorithms
Regularized MPI Analysis

@ Analyzed algorithmic scheme,

!
{m+1 = G (k)

Vbl = (Tr1.0) Vi + €xg1

)

@ Quantity to bound, the loss /o = vi 0 — vr, Q-
@ -matrix, roughly defined as I'" =[], (vPx,).

Theorem

After k iterations of reg-MPI, the loss satisfies

k—1 oo k—1 oo
ko <2) > Mlecil+Y ) Fle |+ h(k)
=l e )

with h(k) = 2322, Ti|dy| or h(k) = 2325, [|bo|.
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Related algorithms
Analysis
Mirror Descent MPI

Regularizing the MDP changes the problem.

Possible to solve the original problem with regularization?
Idea: as DP is iterative, regularize according to the previous
policy

Bregman divergence generated by Q:

Qn(7s) = Da(ms||me)
= Q(ms) — Q) — (VQ(rg), 75 — 7).

Positive, Q./(7") = 0, strongly convex in 7

Eg, KL div. generated by negative entropy

me(a)

KL(rsl|mh) = > me(a) In ms(a)

12 /16



Related algorithms

Analysis
Mirror Descent MPI

o greedy step, mx41 = argmax,(qk, ) — Do(7||mk).

@ evaluation step, vxi1 = (T,THI,Qﬁk)mvk or
Vil = (T7rk+17Q7rk+1)ka. As Qr, . (mky1) = 0, this simplifies
as Vi1 = (Trpir) " vk, that is a partial unregularized
evaluation.

o MD-MPI type-1 and type-2

Tk+1 = Ga, (k) Tkr1 = Ga, ()

Vk+1 = (T7Tk+1,QTrk)ka 7 Vk+1 = (T7Tk+1)mvk

13 /16



Related algorithms

Analysis
Mirror Descent MPI

TRPO: MD-MPI type 2, with m = oo and greedy step
J(W) = B [Equr, (15)lak(si; 3)] = Qmw(-57)] -
MPO: MD-MPI type-2, with m = 0o and greedy step

J(w) = EIKL(mw (-s)1IVQ" (ak(s7, ))]-

DPP: reparameterization of MD-MPI type-1, with m = 1.

etc.
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Related algorithms
Analysis
Mirror Descent MPI

Analyzed algorithmic schemes:
et €lr1
{7Tk+1 =g, (v) {Wk+1 =9q. (%)
7
Vir1 = (Torpp1, 00, )™ Vk + €1 Vir1 = (Trpr) Vi + €xt1

Theorem

Define Rq, = ||sup, Da(||m0)|ls, after K iterations of MD-MPI, for
h=1,2, the regret Lx = Zle Iy satisfies

K k—1 oo ) K k—1 o~
Lk <23 3> Hlacil + 30> Hle |
k=2 i=1 j=i k=1 i=0 j=i
K
+Zh(k —" — 7 Rq. 1.

(1-7)?

with h(k) = 23, Fdo| or h(k) = 235, | bo.
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Perspectives

@ Dynamic programming and optimization
@ Temporal consistency equations. Eg, with entropy

V(s,a) € SxA viq(s) = r(s, a)+1Eg s o[ vea(s')]-In 7, a(als).

@ Regularized policy gradient. With Jo(7) = vv, q,

Via(r) = 1B, | (anals.0) - Z5ECE ) 9inn(al)|.

@ Regularized IRL. Uniqueness of greediness pretty useful, eg.
for entropy 7(s, a) = Inm, (s, a) analytic solution to
(regularized) IRL.

@ Regularized zero-sum Markov games,

[Tuwvavl(s) = [TuovI(s) = Qu(ul[s)) + Qa(v(.ls))-
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