

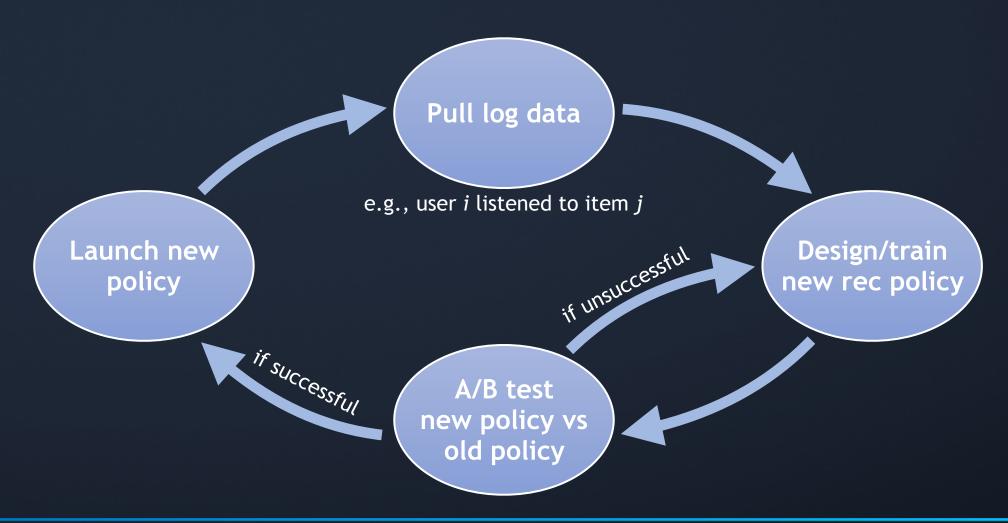
Bayesian Counterfactual Risk Minimization

Ben London (blondon@) Amazon Music

Ted Sandler (sandler@) Amazon Music

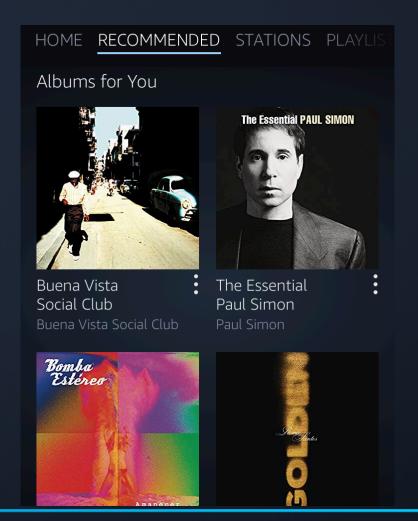
International Conference on Machine Learning Long Beach, CA, June 11, 2019

Learning from Logged Data



Problem 1: Bandit Feedback

- Only observe outcomes from actions taken
 - e.g., only get feedback on recommendations



Problem 2: Bias

- Logged data is biased
 - Policy typically not uniform distribution
 - User typically doesn't see everything
- Bias affects inferences
 - Self-fulfilling prophecies; "rich get richer"
 - Miss key insights due to insufficient support

high support → better estimate low support → who knows?

IPS Policy Optimization

• Use *inverse propensity score* (IPS) estimator

$$\underset{\pi}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} -r_i \, \frac{\pi(a_i \,|\, x_i)}{p_i} \quad \text{logged propensity} \quad p_i = \pi_0(a_i \,|\, x_i)$$

• IPS is an unbiased estimator of expected reward

$$\mathbb{E}_{(x,\rho)\sim\mathbb{D}} \mathbb{E}_{a\sim\pi(x)}[\rho(x,a)] \approx \frac{1}{n} \sum_{i=1}^{n} r_i \frac{\pi(a_i \mid x_i)}{p_i}$$

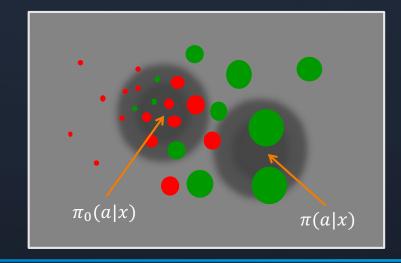
Caveat: logging policy must have full support

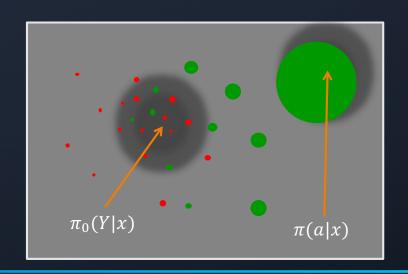
IPS Policy Optimization

• Use *inverse propensity score* (IPS) estimator

$$\underset{\pi}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} -r_i \, \frac{\pi(a_i \,|\, x_i)}{p_i} \quad \text{logged propensity} \quad p_i = \pi_0(a_i \,|\, x_i)$$

• Problem: IPS has *high variance*





CRM Principle

• Counterfactual Risk Minimization (CRM) principle

$$\underset{\pi}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} -r_{i} \frac{\pi(a_{i} \mid x_{i})}{p_{i}} + \lambda \sqrt{\hat{\operatorname{Var}}(\pi, S)}$$
variance regularization

- Motivated by PAC risk analysis
- Stochastic optimization of variance regularizer is tricky
 - Policy optimization for exponential models (POEM) algorithm

Bayesian CRM Principle

• Bayesian Counterfactual Risk Minimization (CRM) principle

$$rg \min_{\mathbb{Q}} \ \frac{1}{n} \sum_{i=1}^n -r_i \, \frac{\pi_{\mathbb{Q}}(a_i \,|\, x_i)}{p_i} \ + \ \lambda \, D_{\mathrm{KL}}(\mathbb{Q}||\mathbb{P})$$
KL div. from prior to posterior

- Bayesian policy: $\pi_{\mathbb{Q}}(a \mid x) = \Pr_{h \sim \mathbb{Q}}\{h(x) = a\}, \quad h: \mathcal{X} \to \mathcal{A}$
- Motivated by PAC-Bayes risk analysis
- Takeaway: posterior should stay close to the prior
 - What should the prior be? How about the logging policy!

Application to Mixed Logits

Mixed logit model

$$h_{w,\gamma}(x) = \arg\max_a w \cdot \phi(x,a) + \gamma_a$$

 $w \sim \mathcal{N}(\mu, \Sigma) \quad \gamma \sim \text{Gumbel}(0,1)^k$

• Like a softmax with normally distributed parameters

$$\pi_{\mathbb{Q}}(a \mid x) = \mathbb{E}_{(w,\gamma) \sim \mathbb{Q}} \left[\mathbb{1} \left\{ h_{w,\gamma}(x) = a \right\} \right] = \mathbb{E}_w \left[\frac{\exp(w \cdot f(x,a))}{\sum_{a'} \exp(w \cdot f(x,a'))} \right]$$

Risk bound motivates logging policy regularization

$$D_{\mathrm{KL}}(\mathbb{Q}\|\mathbb{P}) = \mathrm{O}(\|\mu - \mu_0\|^2)$$

L2 distance to logging policy parameters

Contributions

- PAC Risk bounds for Bayesian policies
- Application to mixed logits
- Logging policy prior motivates new regularizer
- Two new learning objectives (one convex) that minimize bounds
- Experiments show proposed methods gain up to 76% more reward than POEM, while also simpler/more efficient

Visit poster #113 in Pacific Ballroom

