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Reinforcement Learning

s = State
a = Action
r = Reward
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Actions are not independent discrete
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- There is a low dimensional structure
underlying their behavior pattern.
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Actions are not independent discrete
quantities.

There is a low dimensional structure
underlying their behavior pattern.

This structure can be learned
independent of the reward.

Instead of raw actions, agent can act in
this space of behavior and feedback
can be generalized to similar actions.



Proposed Method

ENV 5.7

ENV

Action
Representation

AGENT 1 / - -\\




Algorithm

@_

g /
—(eo)——(a0)
O v

(a) Supervised learning of action representations.
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(a) Supervised learning of action representations.
(b) Learning internal policy with policy gradients.



So, did it work?
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Real-world Applications at Adobe
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Results (Action representations)
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Policy decomposition

We can now consider a new overall policy, 7,, such that
To(als) = / mi(e|s)de.
f=(a)

Here, 7;(e|s) represents a new internal policy which selects
the action representation for the given state s.

Probability

a1®




Case 1: Action representations are known

- The internal policy acts in the space of action representations

- Any existing policy gradient algorithm can be used to improve its local
performance, independent of the mapping function.

Property 1. For a deterministic function, f, that maps each point, e € R,
in the representation space to an action, a € {0, 1}|A|, the expected updates to
0 based on V.J;(0) are equivalent to updates based on V.J,(0, f). That is,

VJo(0,f) =VJi(0).




Case 2: Learning action representations

- P(ale) required to map representation to action can be learned by satisfying the
earlier assumption:
P(als, s") /P ale) P

(e]s,s’)

- We parameterize P(ale) and P(e|s,s’) with learnable functions fand g, respectively.
- Observed transition tuples are from the required distribution.

- Parameters can be learned by minimizing the stochastic KL divergence.

- Procedure is independent of reward.



Experiments

Toy Maze:

- Agent in continuous state with n actuators.
- 2" actions. Exponentially large action space.
- Long horizon and single goal reward.

Adobe Datasets:

N-gram based multi-time step user behavior model from passive data.
Rewards defined using a surrogate objective.

Photoshop tool recommendation (1843 tools)

HelpX tutorial recommendation (1498 tutorials)



Advantages

- Exploits structure in space of actions.
- Quick generalization of feedback to similar actions.
- Less parameters updated using high variance policy gradients.

- Drop-in extension for existing policy gradient algorithms.



