# Training Neural Networks with Local Error Signals

Arild Nøkland



Lars H. Eidnes



## Local learning

- Typically we train neural networks by backpropagating errors from the loss function and back through the layers.
  - Hard to explain how the brain could do this.
    - Backward locking, weight symmetry, other problems
- Massive practical benefits if you could avoid this.
  - Don't have to keep activations in memory
  - Can parallelize easily. Put each layer on its own GPU, train all at the same time.

## Training each layer on its own works!

*Table 4.* CIFAR10 with standard data augmentation. Test error in percent.

|            |      |      | Local loss functions |            |             |
|------------|------|------|----------------------|------------|-------------|
| Model      | #par | glob | pred                 | sim        | predsim     |
| 3x3000 MLP | 27M  | 33.6 | 32.3                 | 33.5       | 30.9        |
| VGG8B      | 8.9M | 5.99 | 8.40                 | 7.16       | <b>5.58</b> |
| VGG11B     | 12M  | 5.56 | 8.39                 | 6.70       | 5.30        |
| VGG11B(2x) | 42M  | 4.91 | 7.30                 | 6.66       | 4.42        |
| VGG11B(3x) | 91M  | 5.02 | 7.37                 | $9.34^{3}$ | <b>3.97</b> |
| 11B(3x)+CO | 91M  | -    | -                    | -          | 3.60        |
| WRN        | 56M  | 3.87 | -                    | -          | -           |
| WRN+CO     | 56M  | 3.08 | _                    | -          | -           |

Results on more datasets later.

## The approach



Train each layer with two sub-networks, each with its own loss function

## Similarity matching loss

#### hidden activations labels

$$L_{sim} = \|S(NeuralNet(H)) - S(Y)\|_F^2 = L2_loss()$$

Intuition: Want things from the same class to have similar representations. Measure similarity with a matrix of cosine similarities.

#### Results

*Table 2.* Fashion-MNIST with 2 pixel jittering and horizontal flipping. Test error in percent.

|            |      |      | Local loss functions |      |         |
|------------|------|------|----------------------|------|---------|
| Model      | #par | glob | pred                 | sim  | predsim |
| 3x1024 MLP | 2.9M | 8.37 | 8.60                 | 9.70 | 8.54    |
| VGG8B      | 7.3M | 4.53 | 5.66                 | 5.12 | 4.65    |
| VGG8B(2x)  | 28M  | 4.55 | 5.11                 | 4.92 | 4.33    |
| 8B(2x)+CO  | 28M  | -    | -                    | -    | 4.14    |
| WRN        | 37M  | 4.63 | -                    | -    | -       |
| WRN+RE     | 37M  | 4.16 | -                    | -    | -       |

*Table 1.* MNIST with 2 pixel jittering. Test error in percent.

|            |      |      | loss fu | nctions |         |
|------------|------|------|---------|---------|---------|
| Model      | #par | glob | pred    | sim     | predsim |
| 3x1024 MLP | 2.9M | 0.75 | 0.68    | 0.80    | 0.62    |
| VGG8B      | 7.3M | 0.26 | 0.40    | 0.65    | 0.31    |
| VGG8B+CO   | 7.3M | -    | -       | -       | 0.26    |
| Ladder     | _    | 0.57 | -       | -       | -       |
| CapsNet    | 8.2M | 0.25 | -       | -       | -       |

*Table 3.* Kuzushiji-MNIST with no data augmentation. Test error in percent.

|            |             |      | Local loss functions |      |         |
|------------|-------------|------|----------------------|------|---------|
| Model      | #par        | glob | pred                 | sim  | predsim |
| 3x1024 MLP | 2.9M        | 5.99 | 7.26                 | 9.80 | 7.33    |
| VGG8B      | 7.3M        | 1.53 | 2.22                 | 2.19 | 1.36    |
| VGG8B+CO   | 7.3M        | -    | -                    | -    | 0.99    |
| PARN       | 11 <b>M</b> | 2.18 | -                    | -    | -       |
| PARN+MM    | 11 <b>M</b> | 1.17 | -                    | -    | _       |

### Results

*Table 4.* CIFAR10 with standard data augmentation. Test error in percent.

|            |      |      | Local loss functions |            |         |
|------------|------|------|----------------------|------------|---------|
| Model      | #par | glob | pred                 | sim        | predsim |
| 3x3000 MLP | 27M  | 33.6 | 32.3                 | 33.5       | 30.9    |
| VGG8B      | 8.9M | 5.99 | 8.40                 | 7.16       | 5.58    |
| VGG11B     | 12M  | 5.56 | 8.39                 | 6.70       | 5.30    |
| VGG11B(2x) | 42M  | 4.91 | 7.30                 | 6.66       | 4.42    |
| VGG11B(3x) | 91M  | 5.02 | 7.37                 | $9.34^{3}$ | 3.97    |
| 11B(3x)+CO | 91M  | -    | -                    | -          | 3.60    |
| WRN        | 56M  | 3.87 | _                    | -          | -       |
| WRN+CO     | 56M  | 3.08 | _                    | -          | -       |

*Table 6.* CIFAR100 with standard data augmentation. Test error in percent.

|            |      |      | Local loss functions |      |             |
|------------|------|------|----------------------|------|-------------|
| Model      | #par | glob | pred                 | sim  | predsim     |
| 3x3000 MLP | 27M  | 62.6 | 58.9                 | 62.5 | 56.9        |
| VGG8B      | 9.0M | 26.2 | 29.3                 | 32.6 | <b>24.1</b> |
| VGG11B     | 12M  | 25.2 | 29.6                 | 30.8 | <b>24.1</b> |
| VGG11B(2x) | 42M  | 23.4 | 26.9                 | 28.0 | 21.2        |
| VGG11B(3x) | 91M  | 23.7 | 25.9                 | 28.0 | 20.1        |
| WRN        | 56M  | 18.8 | _                    | _    | -           |
| WRN+CO     | 56M  | 18.4 | -                    | -    | -           |

#### Results

Table 8. STL-10 with no data augmentation. Test error in percent.

|                   |            |                | Local loss functions |       |                    |
|-------------------|------------|----------------|----------------------|-------|--------------------|
| Model             | #par       | glob           | pred                 | sim   | predsim            |
| VGG8B<br>VGG8B+CO | 12M<br>12M |                | 26.83                | 23.15 | <b>20.51</b> 19.25 |
| WRN<br>WRN+CO     | 11M<br>11M | 23.48<br>20.77 | -                    | -     | -                  |

*Table 7.* SVHN with extra training data, but no data augmentation. Test error in percent.

|          |             |      | Local loss functions |      |         |
|----------|-------------|------|----------------------|------|---------|
| Model    | #par        | glob | pred                 | sim  | predsim |
| VGG8B    | 8.9M        | 2.29 | 2.12                 | 1.89 | 1.74    |
| VGG8B+CO | 8.9M        | -    | -                    | -    | 1.65    |
| WRN      | 11 <b>M</b> | 1.60 | _                    | -    | -       |
| WRN+CO   | 11 <b>M</b> | 1.30 | -                    | -    | -       |

## Optimization vs generalization

- Back-prop has fastest & lowest drop in training error
- Local learning is competitive with back-prop in terms of test error
- Local learning is a good regularizer
- But: Both pred and simlosses help optimization in a complementary way.



## Sim-loss + global backprop

*Table 9.* Similarity matching as a complementary objective. Test error in percent.

| Dataset         | Model  | #par | glob | predsim     | glob+sim |
|-----------------|--------|------|------|-------------|----------|
| MNIST           | VGG8B  | 7.3M | 0.26 | 0.31        | 0.24     |
| Fashion-MNIST   | VGG8B  | 7.3M | 4.53 | 4.65        | 4.16     |
| Kuzushiji-MNIST | VGG8B  | 7.3M | 1.53 | 1.36        | 1.13     |
| CIFAR-10        | VGG11B | 12M  | 5.56 | 5.30        | 4.33     |
| CIFAR-100       | VGG11B | 12M  | 25.2 | 24.1        | 22.2     |
| SVHN            | VGG8B  | 8.9M | 2.29 | <b>1.74</b> | 1.95     |
| STL-10          | VGG8B  | 12M  | 33.1 | 20.5        | 25.6     |

## Results, back-prop free version

- Still have 1-step backprop. To remove it:
  - Remove the conv2d before the sim-loss
  - Use Feedback Alignment [Lillicrap et al, 2014] through linear before the pred-loss
- Also: Use a random projection of the labels

*Table 5.* CIFAR10 with standard data augmentation. No back-propagation. Test error in percent.

| Model     | #par   | pred-bpf | sim-bpf | predsim-bpf |
|-----------|--------|----------|---------|-------------|
| VGG8B     | 0.7111 | 9.80     | 13.39   | 9.02        |
| VGG8B(2x) | 311VI  | -        | -       | 7.80        |

## Summary

- We train each layer on its own, without global backprop
- We use two loss functions
  - Standard cross entropy loss
  - A similarity matching loss
    - Squared error on similarity matrices
    - Wants similar activations for things of the same class
- Works well on VGG-like networks

## Intriguing questions

- We've just prodded the space of local loss functions, and stumbled across something that helps a lot. Is there more to be found in this space?
- Can we better understand how layers interact when they are trained on their own? I.e. why does this work?
- Does something like this happen in the brain?