Online Meta-Learning

Chelsea Finn*, Aravind Rajeswaran*, Sham Kakade, Sergey Levine

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

More realistically:

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

More realistically:

learn

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

More realistically:

learn

learn

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

learn learn learn

More realistically:

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

learn learn learn

More realistically:

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

learn learn learn learn

More realistically:

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

More realistically:

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

learn learn learn learn learn learn

More realistically:

Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

In many practical situations: Learn new task with only a **few** datapoints

More realistically:

slow learning —

rapid learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

perform perform perform perform perform perform

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

perform perform perform perform perform perform perform zero-shot perform perf

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

Online Meta-Learning (this work)

Efficiently learn a sequence of tasks from a non-stationary distribution.

perform perform perform perform perform perform perform zero-shot perform perf

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

perform perfor

Online Meta-Learning (this work)

Efficiently learn a sequence of tasks from a non-stationary distribution.

learn learn learn learn learn learn

time performance after seeing a small amount of data

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \to \mathbb{R}$

For round $t \in \{1, 2, \dots \infty\}$:

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \to \mathbb{R}$ For round $t \in \{1, 2, \dots \infty\}$:

- 1. World picks a loss function $\ell_t(\cdot)$
- 2. Agent should pick θ_t without knowledge of ℓ_t

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \to \mathbb{R}$ For round $t \in \{1, 2, \dots \infty\}$:

- 1. World picks a loss function $\ell_t(\cdot)$
- 2. Agent should pick θ_t without knowledge of ℓ_t
- 3. Agent uses update procedure $\Phi_t: \Theta \to \Theta$, and obtains $\tilde{\theta}_t = \Phi_t(\theta_t)$

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \to \mathbb{R}$

For round $t \in \{1, 2, \dots \infty\}$:

- 1. World picks a loss function $\ell_t(\cdot)$
- 2. Agent should pick θ_t without knowledge of ℓ_t
- 3. Agent uses update procedure $\Phi_t: \Theta \to \Theta$, and obtains $\tilde{\theta}_t = \Phi_t(\theta_t)$

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \to \mathbb{R}$

For round $t \in \{1, 2, \dots \infty\}$:

- 1. World picks a loss function $\ell_t(\cdot)$
- 2. Agent should pick θ_t without knowledge of ℓ_t
- 3. Agent uses update procedure $\Phi_t: \Theta \to \Theta$, and obtains $\hat{\theta}_t = \Phi_t(\theta_t)$
- 4. Agent suffers $\ell_t(\tilde{\theta}_t)$ for the round

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \to \mathbb{R}$

For round $t \in \{1, 2, \dots \infty\}$:

- 1. World picks a loss function $\ell_t(\cdot)$
- 2. Agent should pick θ_t without knowledge of ℓ_t
- 3. Agent uses update procedure $\Phi_t: \Theta \to \Theta$, and obtains $\theta_t = \Phi_t(\theta_t)$
- 4. Agent suffers $\ell_t(\hat{\theta}_t)$ for the round

Loss of algorithm

Loss of best algorithm in hindsight

Goal: Learning algorithm with sub-linear
$$\operatorname{Regret}_T := \sum_{t=1}^I \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^I \ell_t(\Phi_t(\theta))$$

$$\lim_{\Theta} \sum_{t=1}^{-} \ell_t(\Phi_t(\theta))$$

Follow the Meta-Leader (FTML):
$$\theta_{t+1} = \arg\min_{\theta} \sum_{t=1}^{\infty} \ell_t(\Phi_t(\theta))$$

Can be implemented with MAML

Follow the Meta-Leader (FTML) : $heta_{t+1} = \arg\min_{ heta} \sum_{t=1}^{r} \ell_t(\Phi_t(heta))$

Can be implemented with MAML

Theorem (Informal): If $\{\ell_t(\cdot), \hat{\ell}_t(\cdot)\}\ \forall t \text{ are } C^2\text{-smooth and strongly convex,}$ the sequence of models $\{\theta_1, \theta_2, \dots, \theta_T\}$ returned by FTML has the property:

$$\operatorname{Regret}_{T} := \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta_{t})) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta)) = O(\log T)$$

Follow the Meta-Leader (FTML): $heta_{t+1} = \arg\min_{ heta} \sum_{t=1}^{I} \ell_t(\Phi_t(heta))$

Can be implemented with MAML

Theorem (Informal): If $\{\ell_t(\cdot), \hat{\ell}_t(\cdot)\}\ \forall t$ are C^2 -smooth and strongly convex, the sequence of models $\{\theta_1, \theta_2, \dots, \theta_T\}$ returned by FTML has the property:

$$\operatorname{Regret}_{T} := \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta_{t})) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta)) = O(\log T)$$

$$\implies \text{Avg. Regret} = \frac{\text{Regret}_T}{T} \to 0 \text{ as } T \to \infty$$

Learning in a sequential non-stationary setting, but still competitive with best meta-learner in hindsight!

Experiment with sequences of tasks:

Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST

Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST
- 3D object pose prediction

Example pose prediction tasks

Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST
- 3D object pose prediction
- CIFAR-100 classification

Example pose prediction tasks

Learning proficiency (error)

task index

task index

FTML (ours)

FTML (ours)
learns each new task faster & with greater proficiency,

FTML (ours)

learns each new task faster & with greater proficiency, approaches few-shot learning regime

Takeaways

Introduced online meta-learning problem formulation

Meta-learning is effective in non-stationary settings

Similar guarantees to online learning, but better empirical performance

For more, come see us at poster #5!