## Online Meta-Learning

Chelsea Finn\*, Aravind Rajeswaran\*, Sham Kakade, Sergey Levine





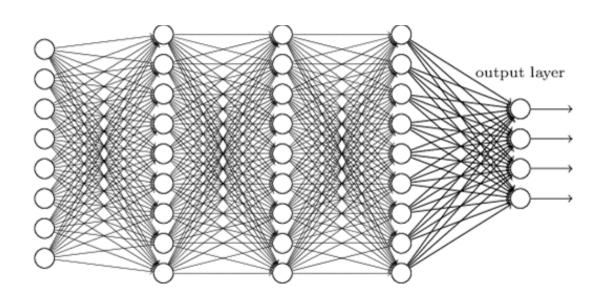


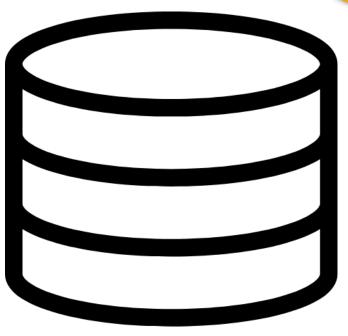




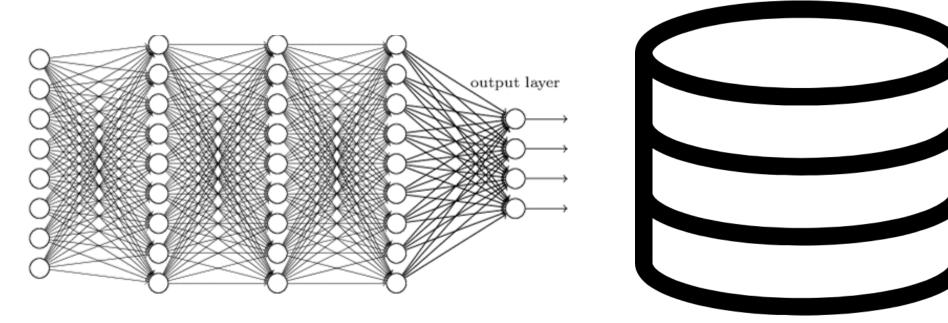


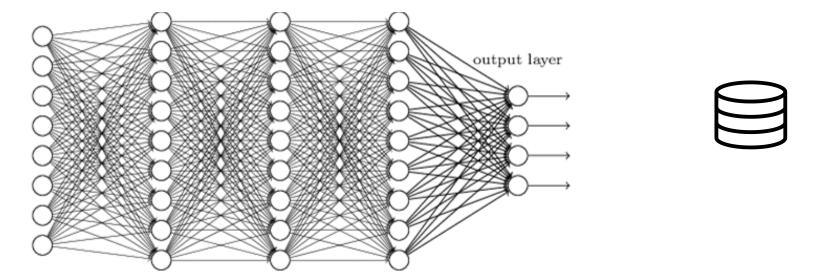


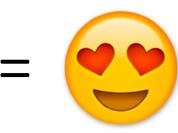


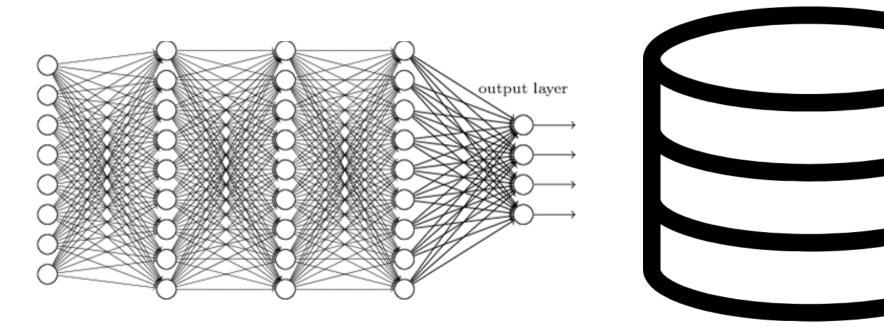








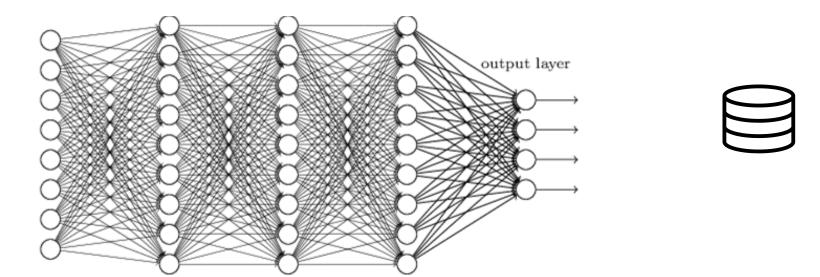




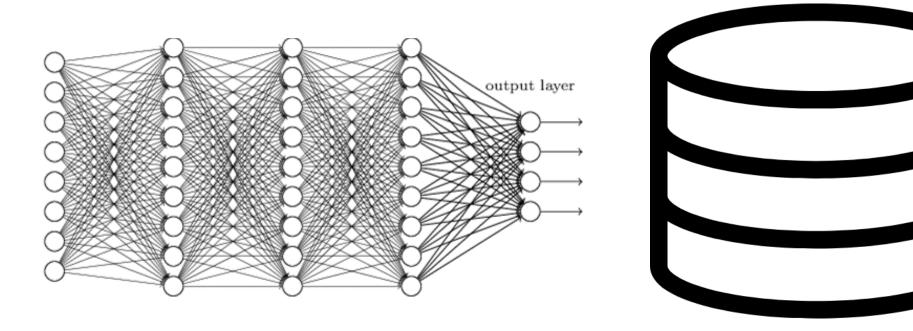
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently



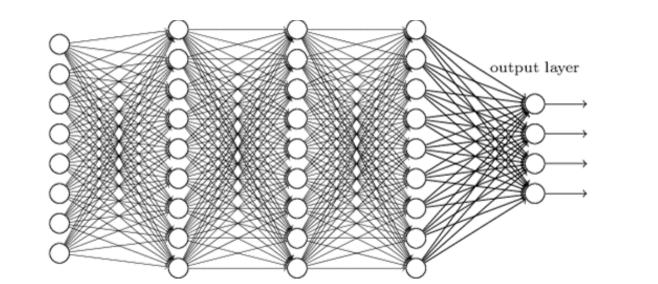




#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

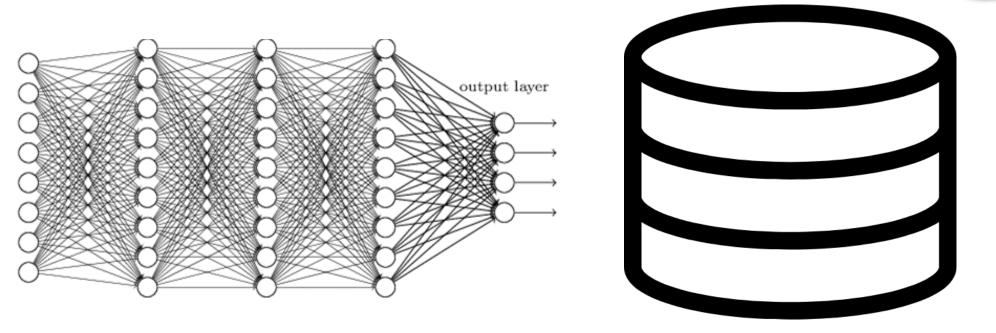
Given i.i.d. task distribution, learn a new task efficiently







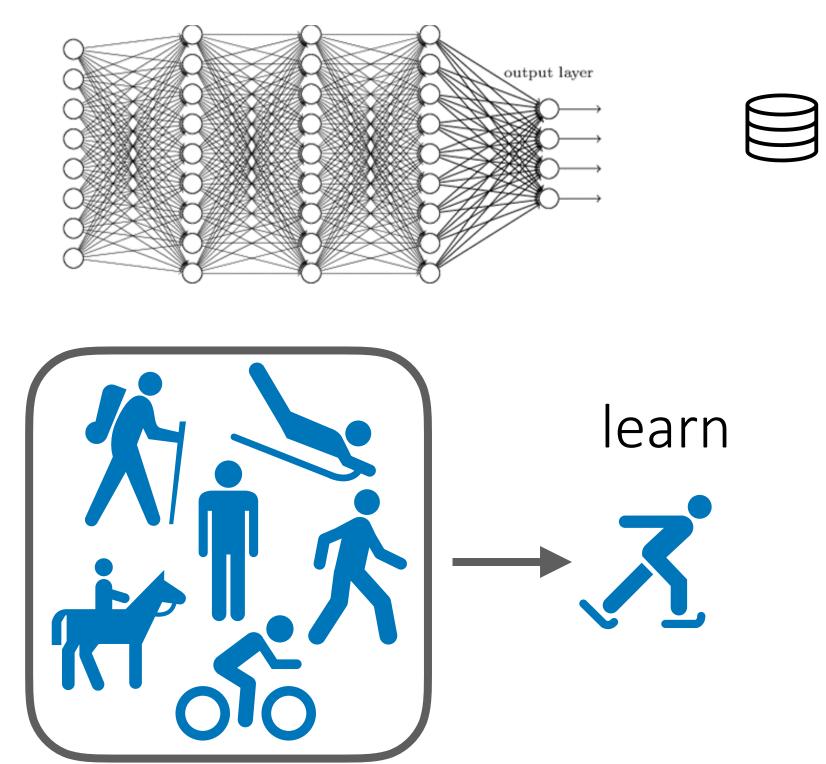




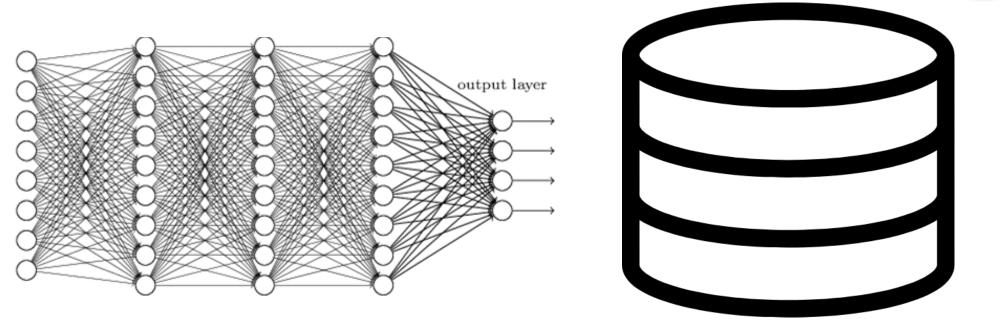
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently





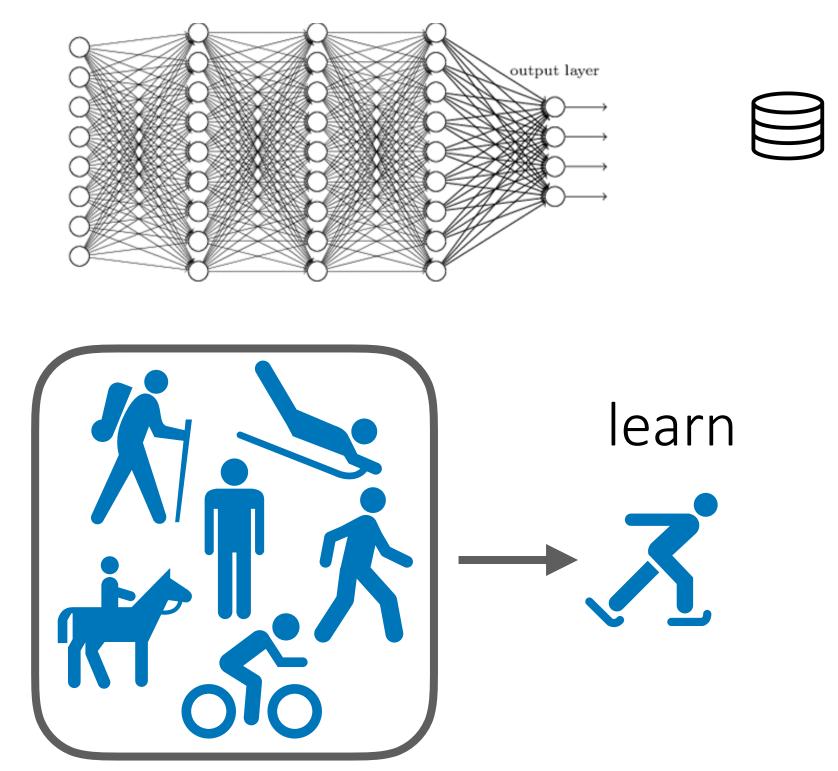


#### Meta-Learning

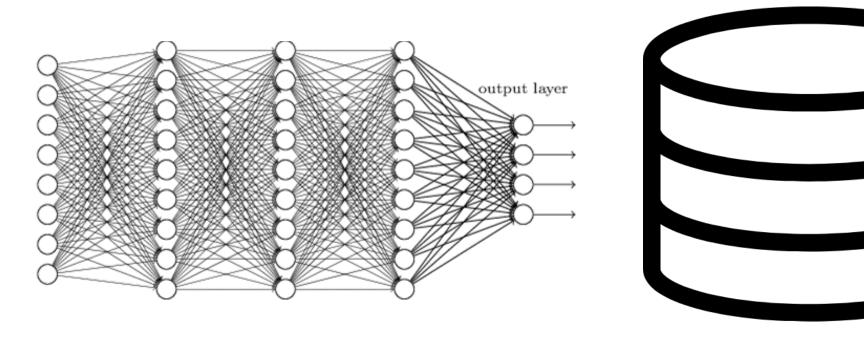
(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

More realistically:





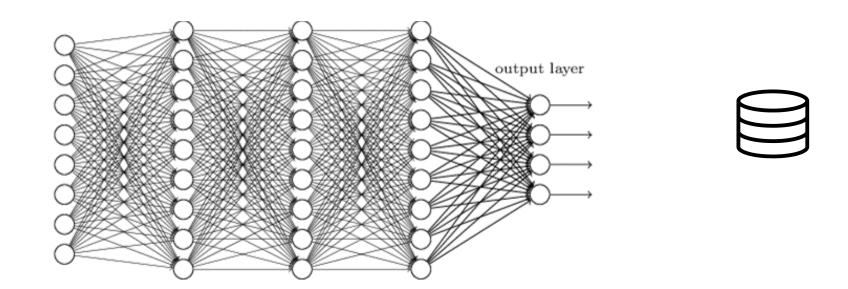


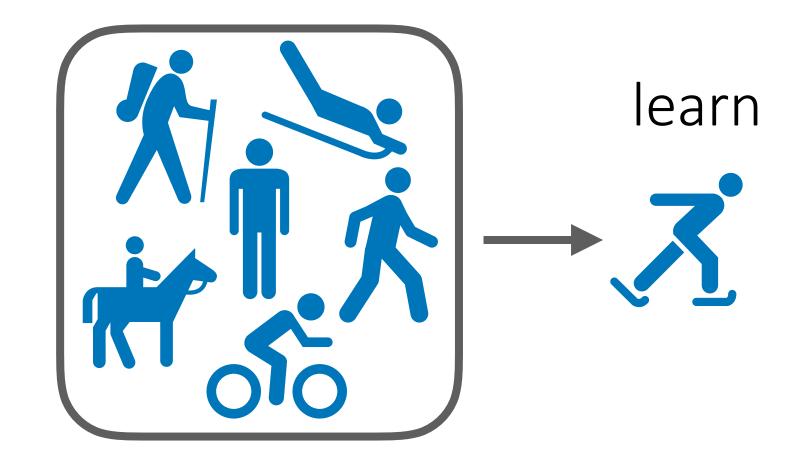
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints



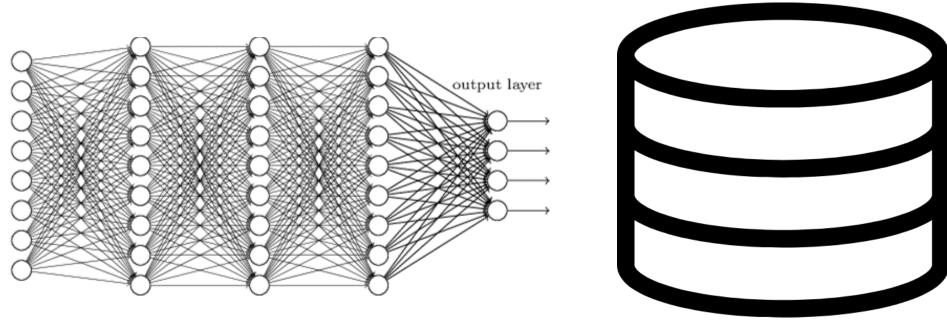


More realistically:



learn



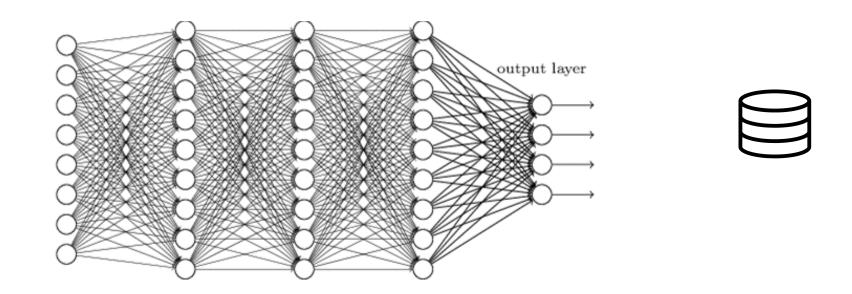


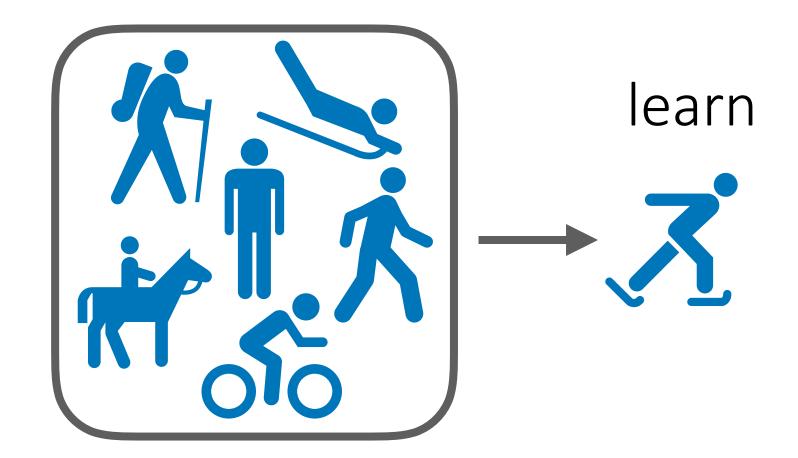
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints





More realistically:

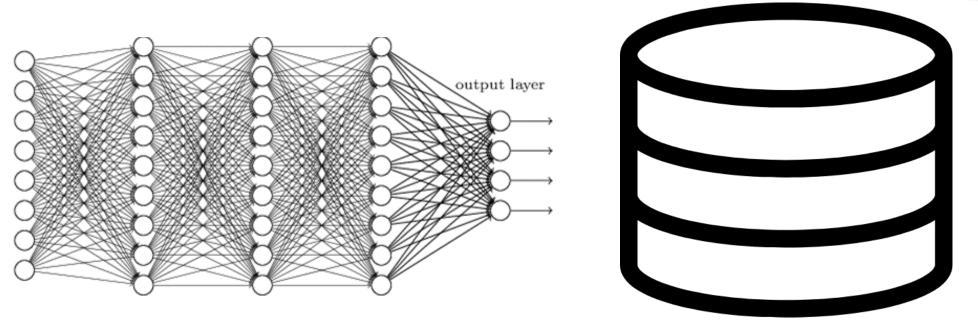


learn



learn



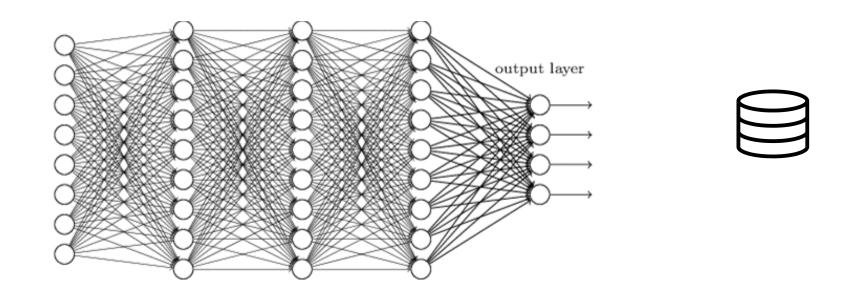


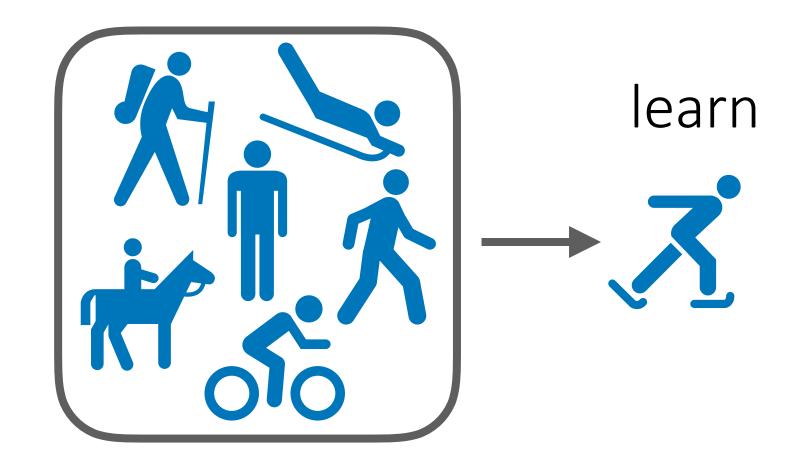
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints



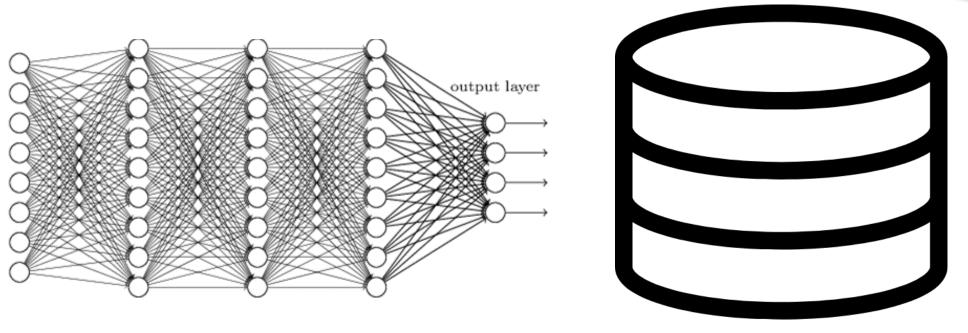


learn learn learn

More realistically:





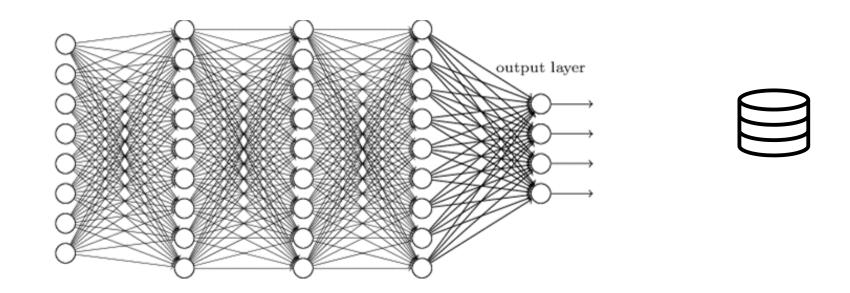


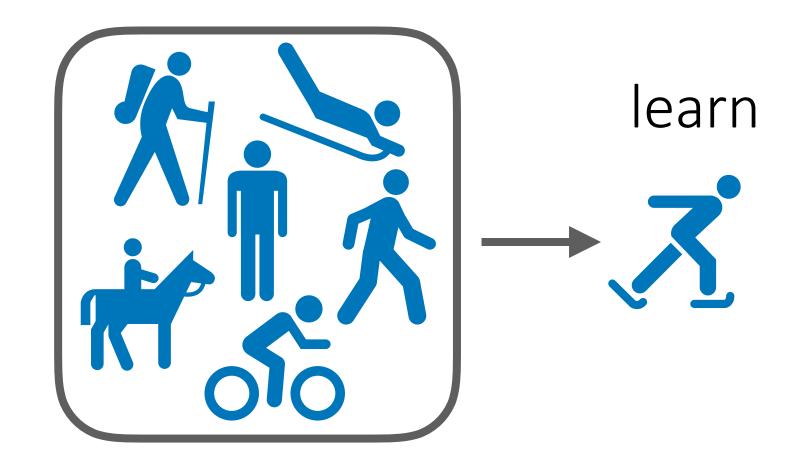
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints



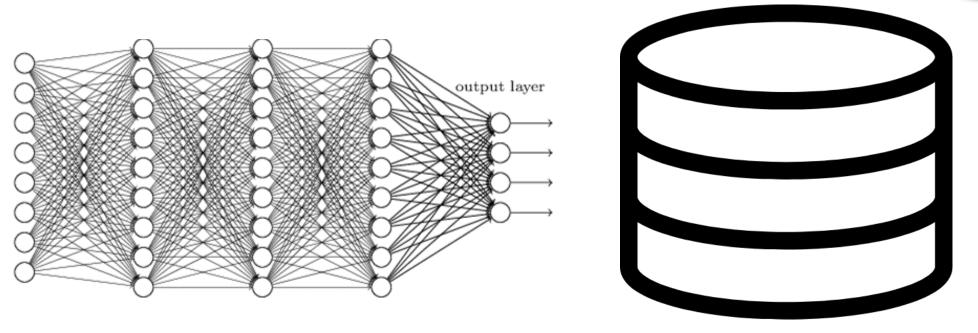


learn learn learn

#### More realistically:





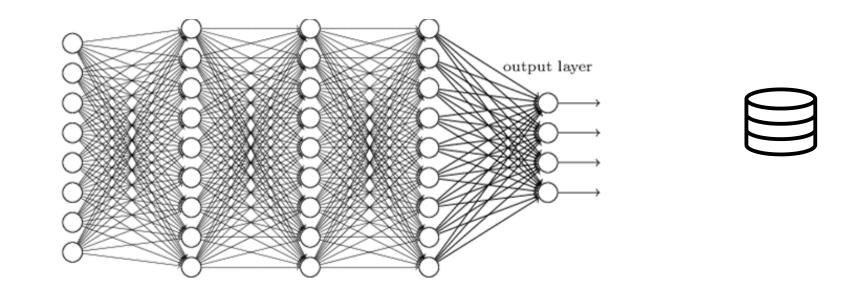


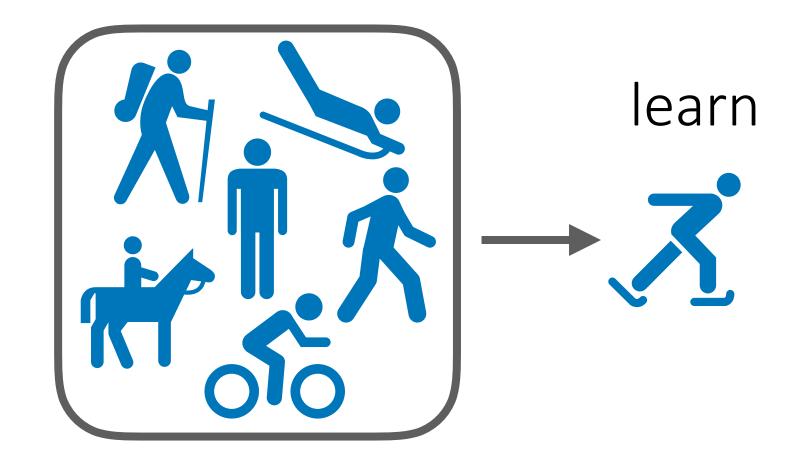
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints



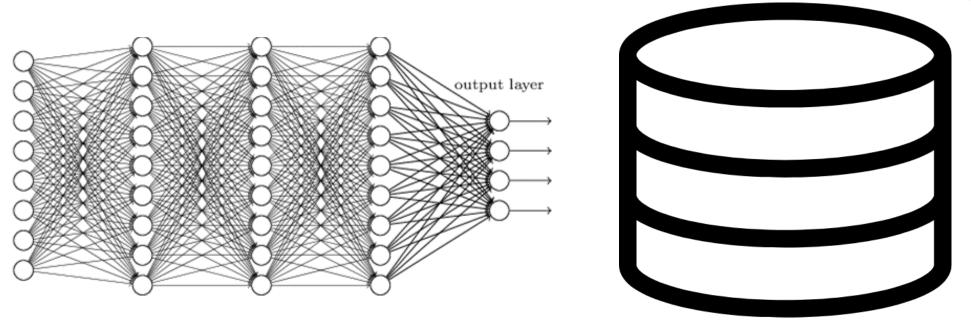


learn learn learn learn

More realistically:





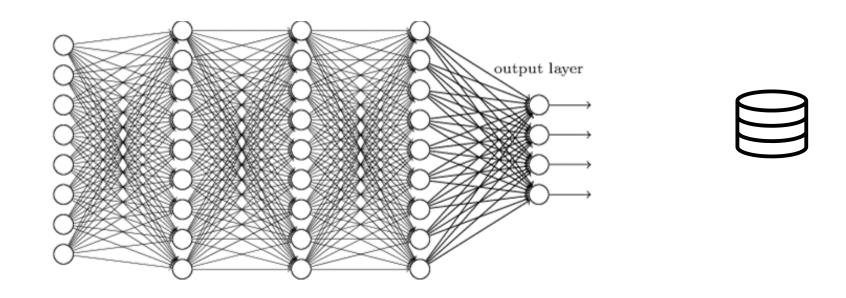


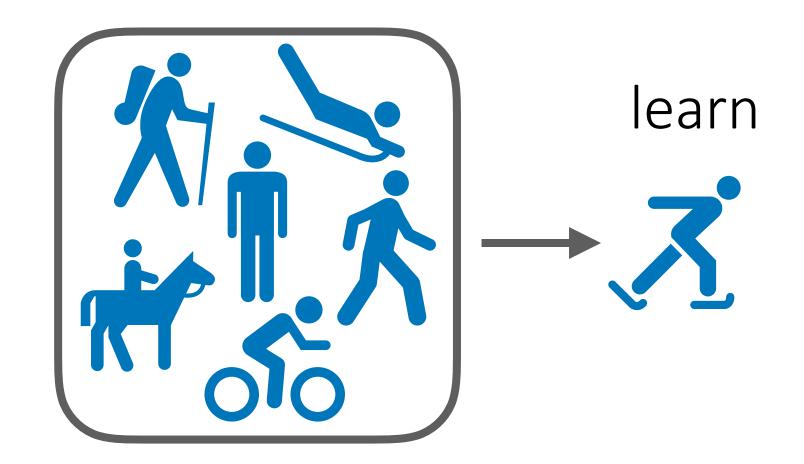
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints

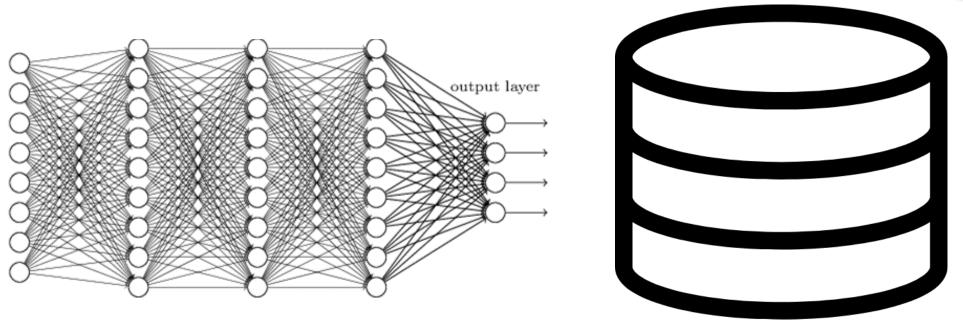




More realistically:





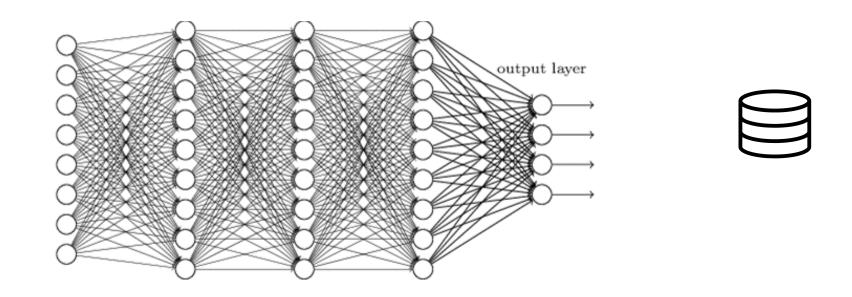


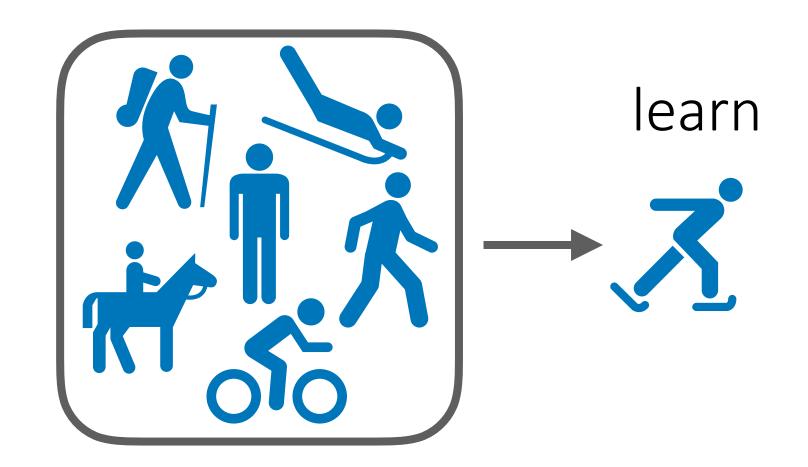
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints



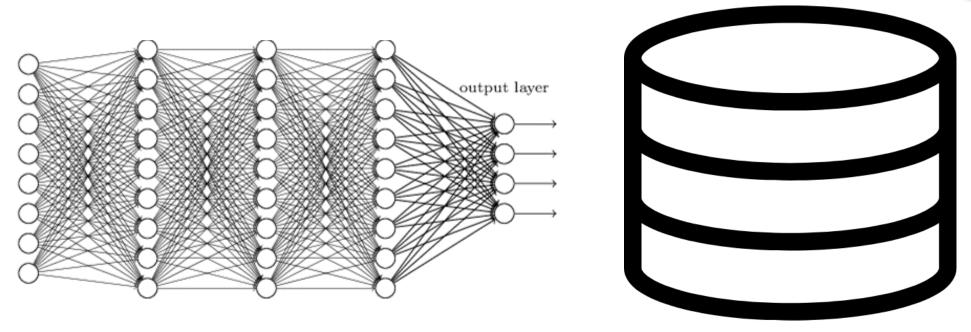


learn learn learn learn learn learn

#### More realistically:





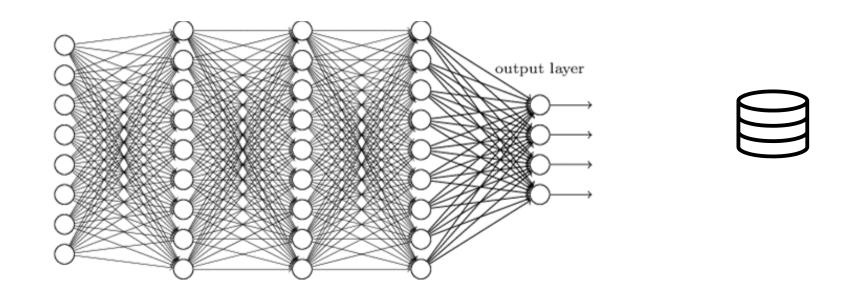


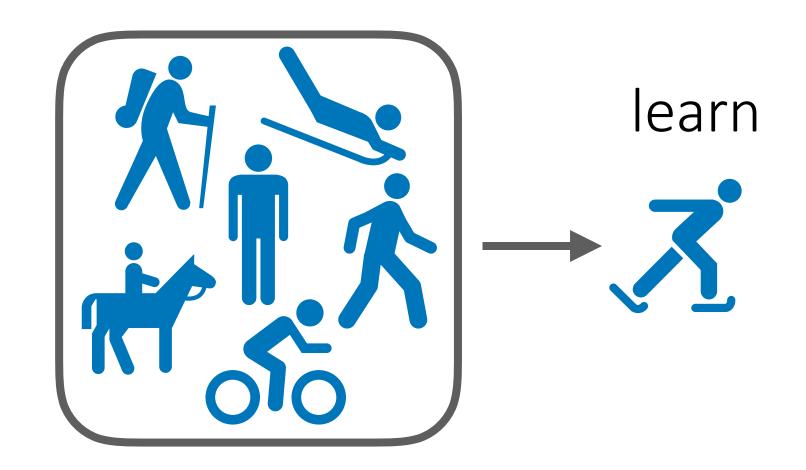
#### Meta-Learning

(Schmidhuber et al. '87, Bengio et al. '92)

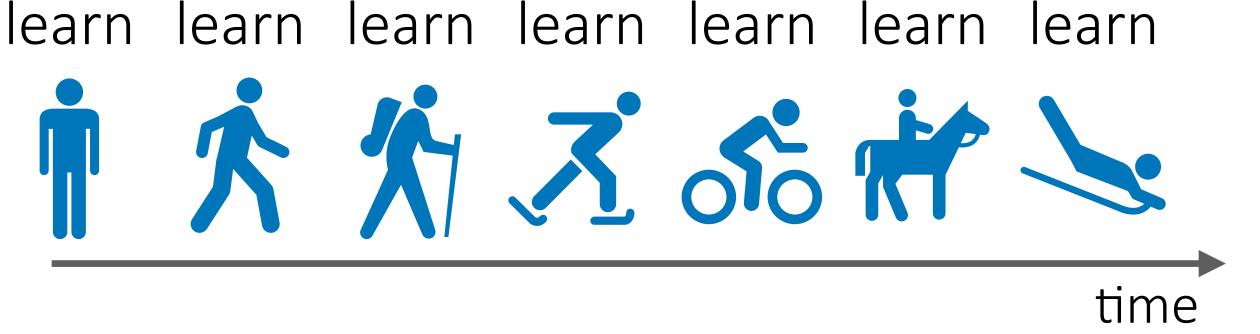
Given i.i.d. task distribution, learn a new task efficiently

#### In many practical situations: Learn new task with only a **few** datapoints





More realistically:



slow learning —

rapid learning

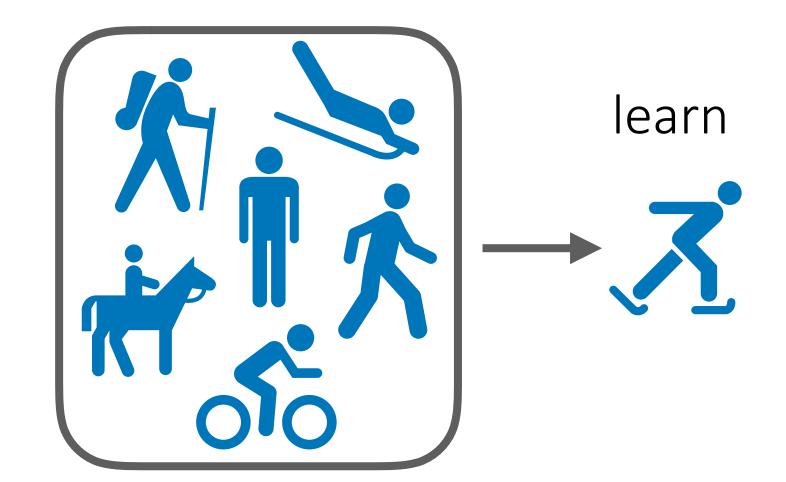
(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

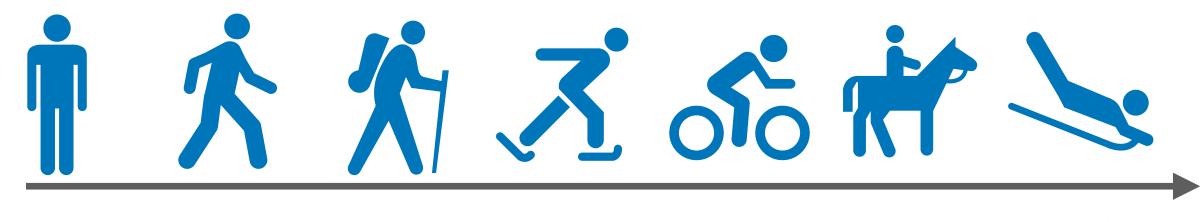
#### Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.



perform perform perform perform perform perform



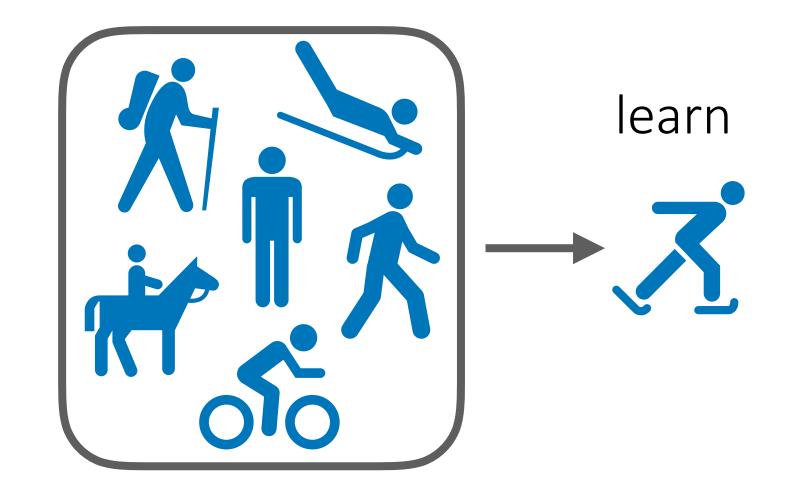
(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

#### Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.



perform perform perform perform perform perform perform zero-shot perform perf

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently

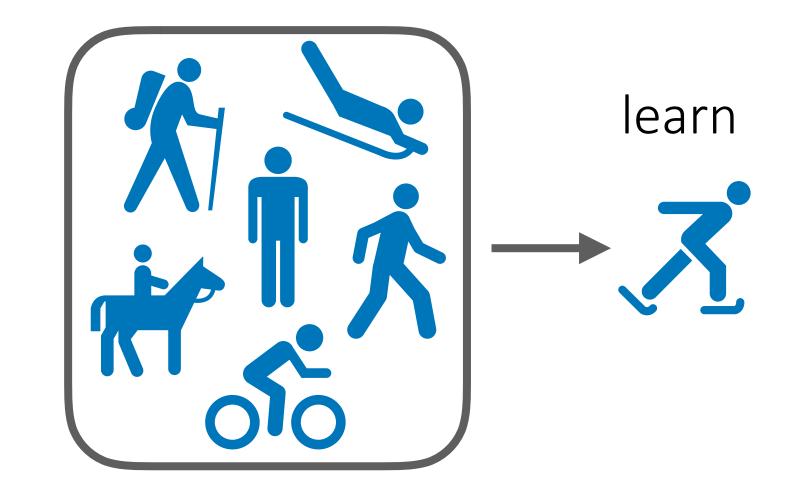


(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

# Online Meta-Learning (this work)

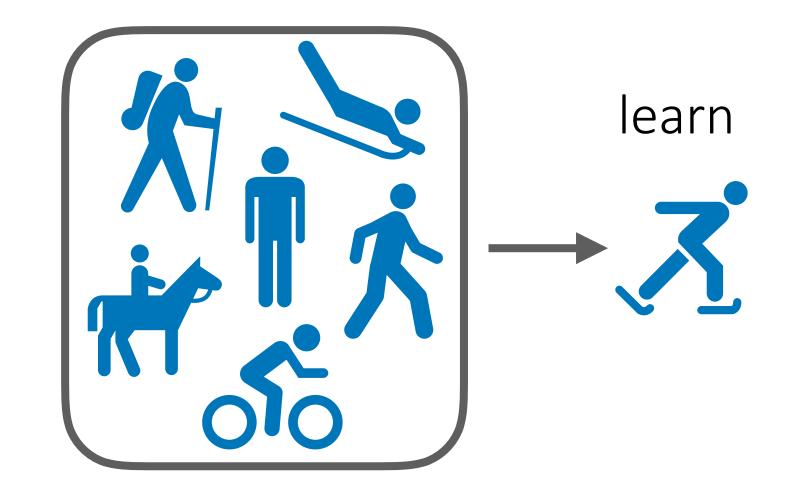
Efficiently learn a sequence of tasks from a non-stationary distribution.



perform perform perform perform perform perform perform zero-shot perform perf

(Schmidhuber et al. '87, Bengio et al. '92)

Given i.i.d. task distribution, learn a new task efficiently



#### Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

# perform perfor

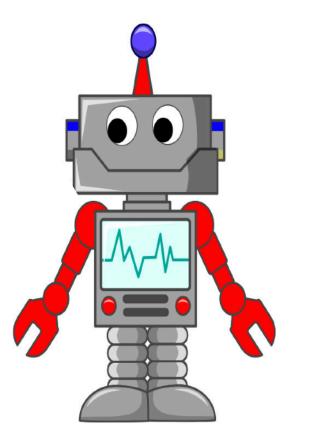
# Online Meta-Learning (this work)

Efficiently learn a sequence of tasks from a non-stationary distribution.

learn learn learn learn learn learn



time performance after seeing a small amount of data



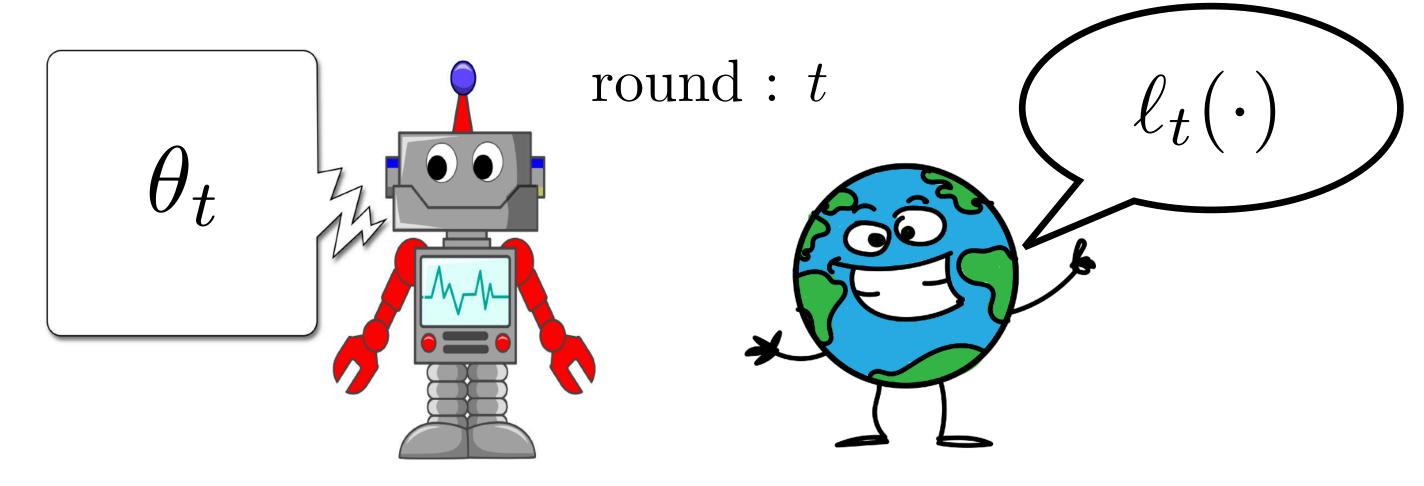






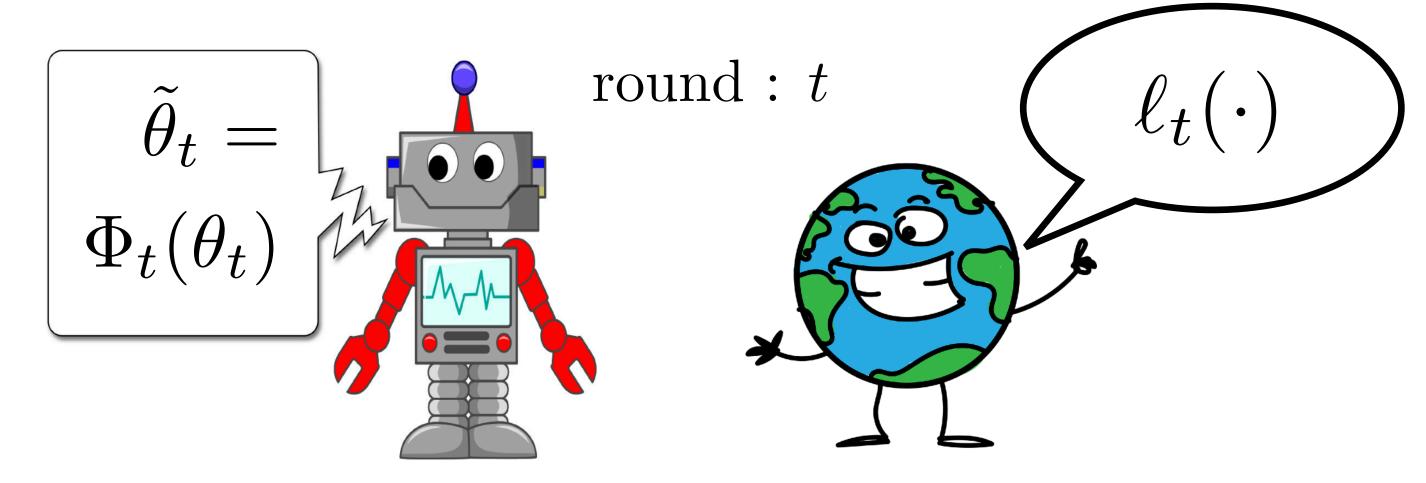
Space of parameters  $\theta \in \Theta \subseteq \mathbb{R}^d$  and loss functions  $\ell : \Theta \to \mathbb{R}$ 

For round  $t \in \{1, 2, \dots \infty\}$ :



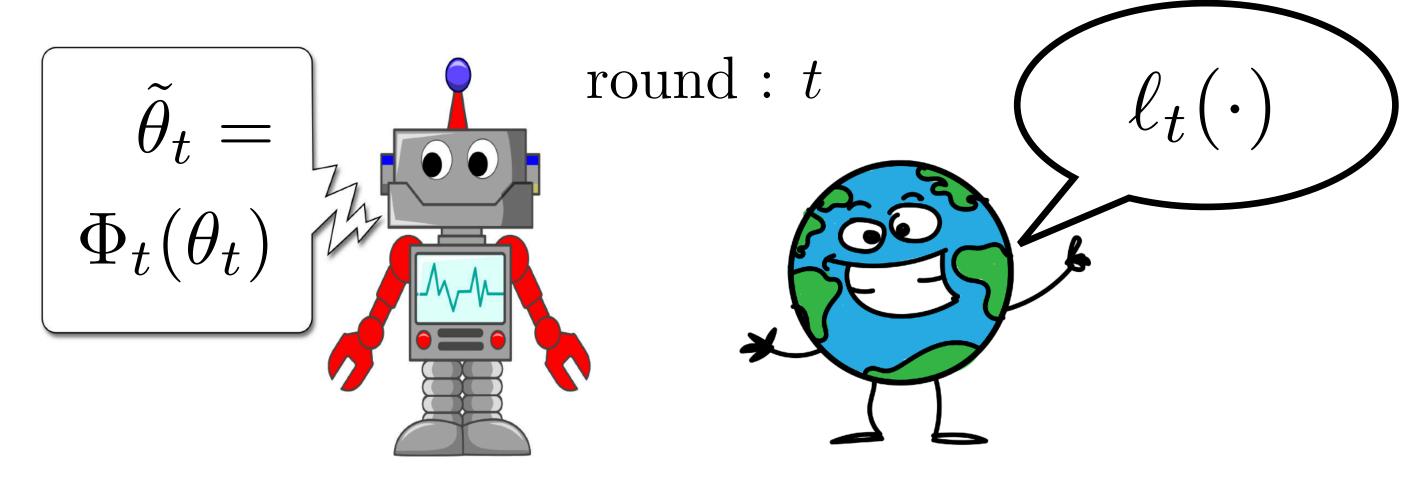
Space of parameters  $\theta \in \Theta \subseteq \mathbb{R}^d$  and loss functions  $\ell : \Theta \to \mathbb{R}$ For round  $t \in \{1, 2, \dots \infty\}$ :

- 1. World picks a loss function  $\ell_t(\cdot)$
- 2. Agent should pick  $\theta_t$  without knowledge of  $\ell_t$



Space of parameters  $\theta \in \Theta \subseteq \mathbb{R}^d$  and loss functions  $\ell : \Theta \to \mathbb{R}$ For round  $t \in \{1, 2, \dots \infty\}$ :

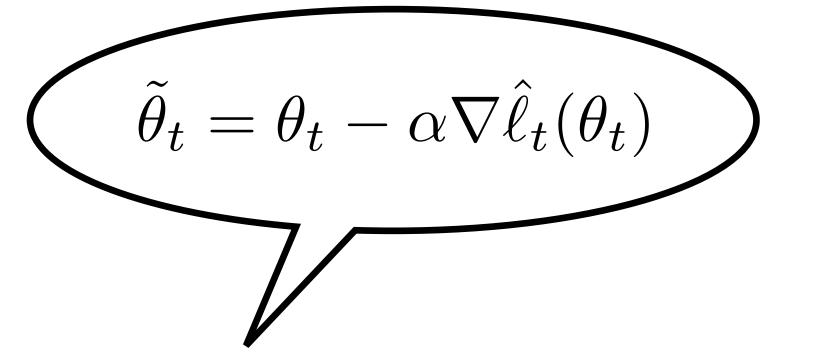
- 1. World picks a loss function  $\ell_t(\cdot)$
- 2. Agent should pick  $\theta_t$  without knowledge of  $\ell_t$
- 3. Agent uses update procedure  $\Phi_t: \Theta \to \Theta$ , and obtains  $\tilde{\theta}_t = \Phi_t(\theta_t)$

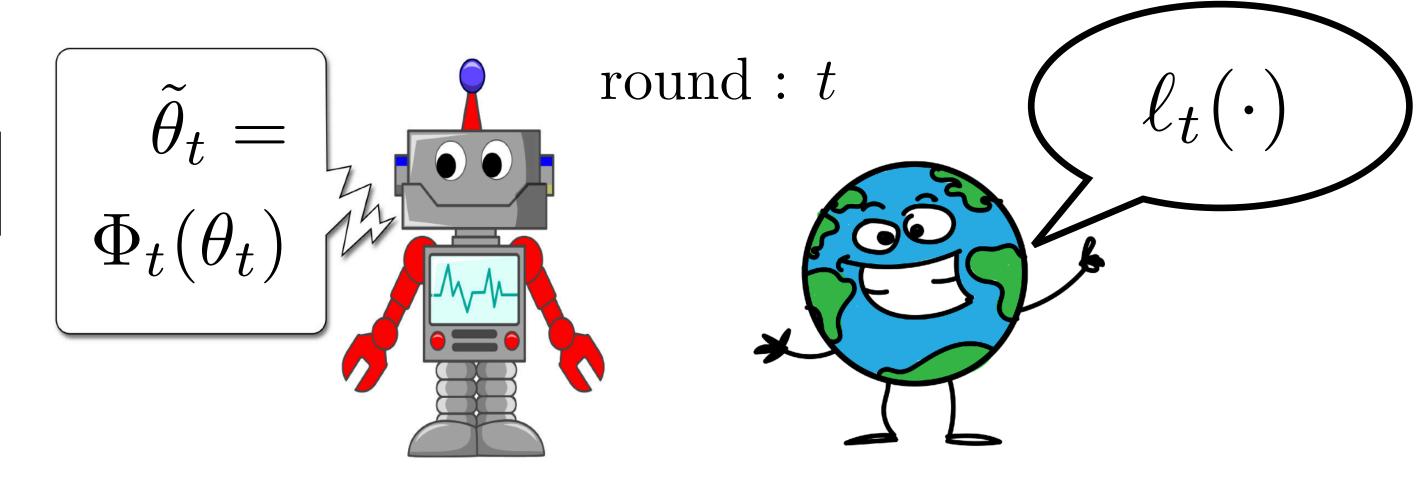


Space of parameters  $\theta \in \Theta \subseteq \mathbb{R}^d$  and loss functions  $\ell : \Theta \to \mathbb{R}$ 

For round  $t \in \{1, 2, \dots \infty\}$ :

- 1. World picks a loss function  $\ell_t(\cdot)$
- 2. Agent should pick  $\theta_t$  without knowledge of  $\ell_t$
- 3. Agent uses update procedure  $\Phi_t: \Theta \to \Theta$ , and obtains  $\tilde{\theta}_t = \Phi_t(\theta_t)$

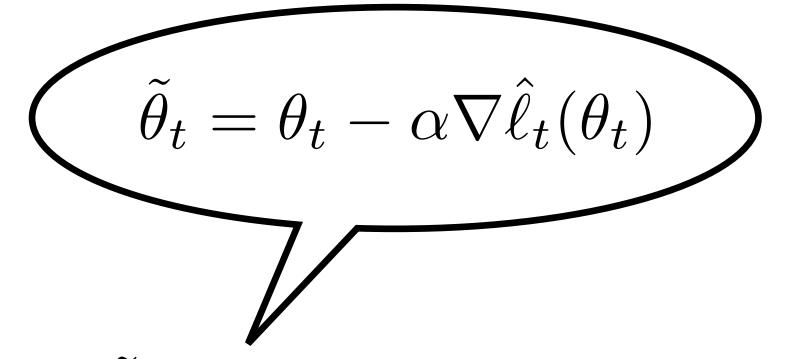


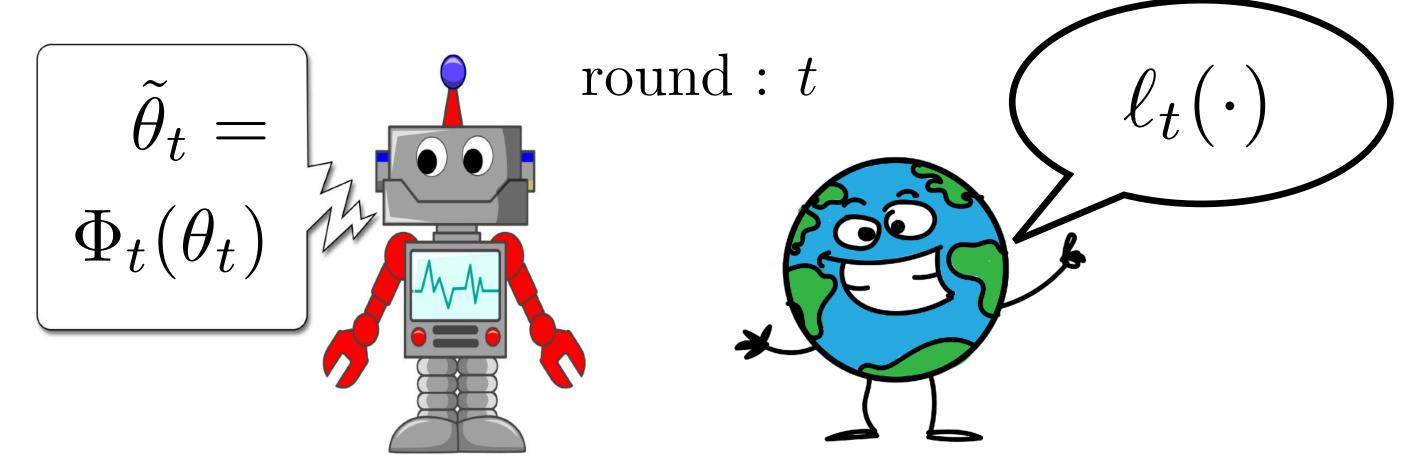


Space of parameters  $\theta \in \Theta \subseteq \mathbb{R}^d$  and loss functions  $\ell : \Theta \to \mathbb{R}$ 

For round  $t \in \{1, 2, \dots \infty\}$ :

- 1. World picks a loss function  $\ell_t(\cdot)$
- 2. Agent should pick  $\theta_t$  without knowledge of  $\ell_t$
- 3. Agent uses update procedure  $\Phi_t: \Theta \to \Theta$ , and obtains  $\hat{\theta}_t = \Phi_t(\theta_t)$
- 4. Agent suffers  $\ell_t(\tilde{\theta}_t)$  for the round

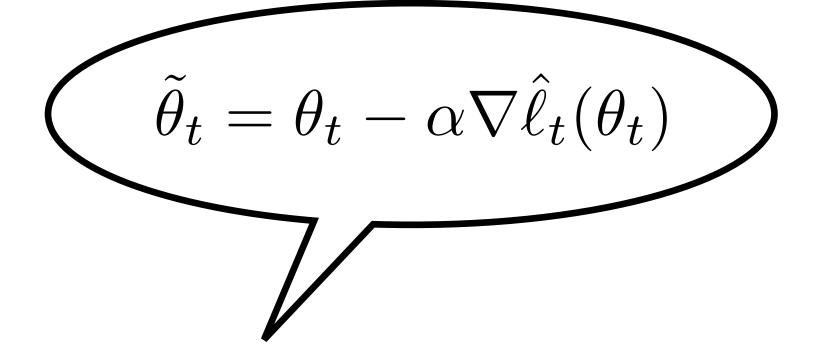




Space of parameters  $\theta \in \Theta \subseteq \mathbb{R}^d$  and loss functions  $\ell : \Theta \to \mathbb{R}$ 

For round  $t \in \{1, 2, \dots \infty\}$ :

- 1. World picks a loss function  $\ell_t(\cdot)$
- 2. Agent should pick  $\theta_t$  without knowledge of  $\ell_t$
- 3. Agent uses update procedure  $\Phi_t: \Theta \to \Theta$ , and obtains  $\theta_t = \Phi_t(\theta_t)$
- 4. Agent suffers  $\ell_t(\hat{\theta}_t)$  for the round



Loss of algorithm

Loss of best algorithm in hindsight

Goal: Learning algorithm with sub-linear 
$$\operatorname{Regret}_T := \sum_{t=1}^I \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^I \ell_t(\Phi_t(\theta))$$

$$\lim_{\Theta} \sum_{t=1}^{-} \ell_t(\Phi_t(\theta))$$

Follow the Meta-Leader (FTML): 
$$\theta_{t+1} = \arg\min_{\theta} \sum_{t=1}^{\infty} \ell_t(\Phi_t(\theta))$$

Can be implemented with MAML

# Follow the Meta-Leader (FTML) : $heta_{t+1} = \arg\min_{ heta} \sum_{t=1}^{r} \ell_t(\Phi_t( heta))$

Can be implemented with MAML

**Theorem** (Informal): If  $\{\ell_t(\cdot), \hat{\ell}_t(\cdot)\}\ \forall t \text{ are } C^2\text{-smooth and strongly convex,}$  the sequence of models  $\{\theta_1, \theta_2, \dots, \theta_T\}$  returned by FTML has the property:

$$\operatorname{Regret}_{T} := \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta_{t})) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta)) = O(\log T)$$

Follow the Meta-Leader (FTML):  $heta_{t+1} = \arg\min_{ heta} \sum_{t=1}^{I} \ell_t(\Phi_t( heta))$ 

Can be implemented with MAML

**Theorem** (Informal): If  $\{\ell_t(\cdot), \hat{\ell}_t(\cdot)\}\ \forall t$  are  $C^2$ -smooth and strongly convex, the sequence of models  $\{\theta_1, \theta_2, \dots, \theta_T\}$  returned by FTML has the property:

$$\operatorname{Regret}_{T} := \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta_{t})) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_{t}(\Phi_{t}(\theta)) = O(\log T)$$

$$\implies \text{Avg. Regret} = \frac{\text{Regret}_T}{T} \to 0 \text{ as } T \to \infty$$

Learning in a sequential non-stationary setting, but still competitive with best meta-learner in hindsight!

Experiment with sequences of tasks:

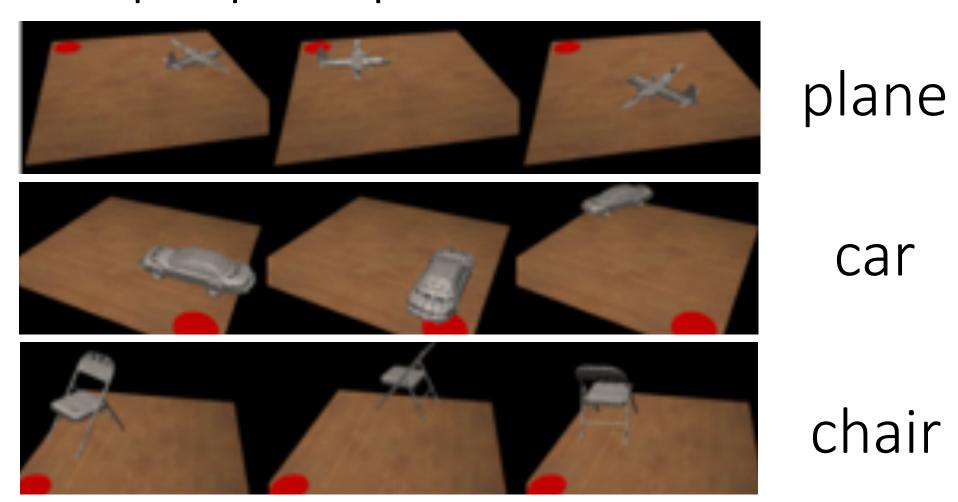
#### Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST

#### Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST
- 3D object pose prediction

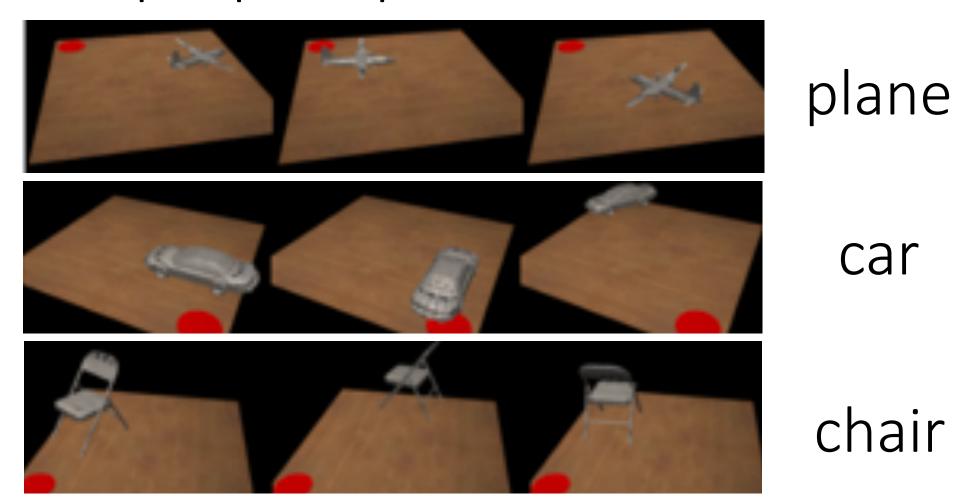
#### Example pose prediction tasks



#### Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST
- 3D object pose prediction
- CIFAR-100 classification

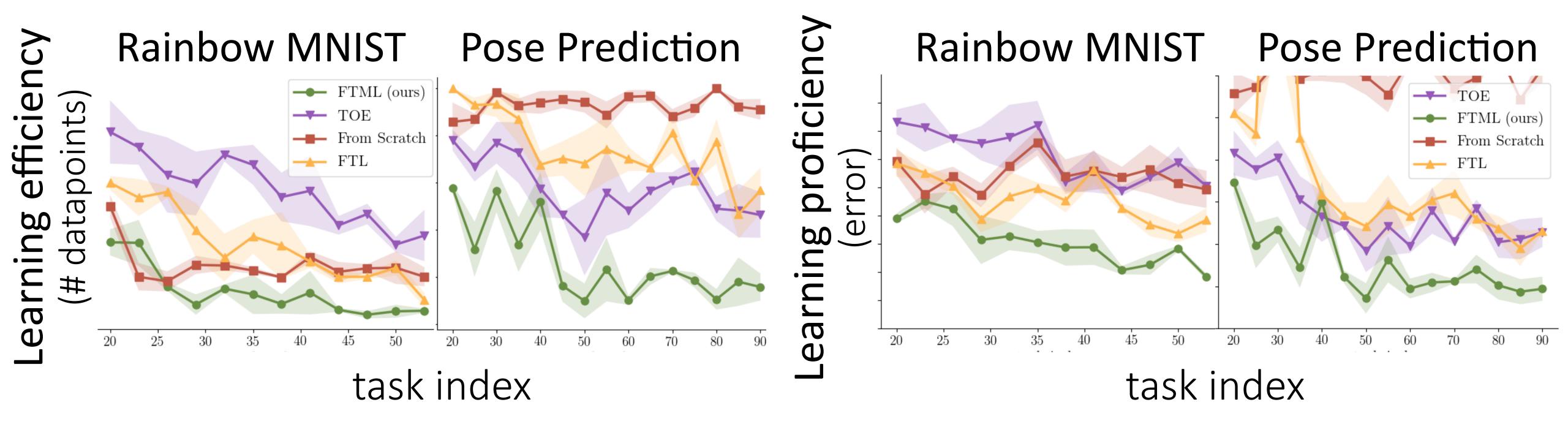
#### Example pose prediction tasks



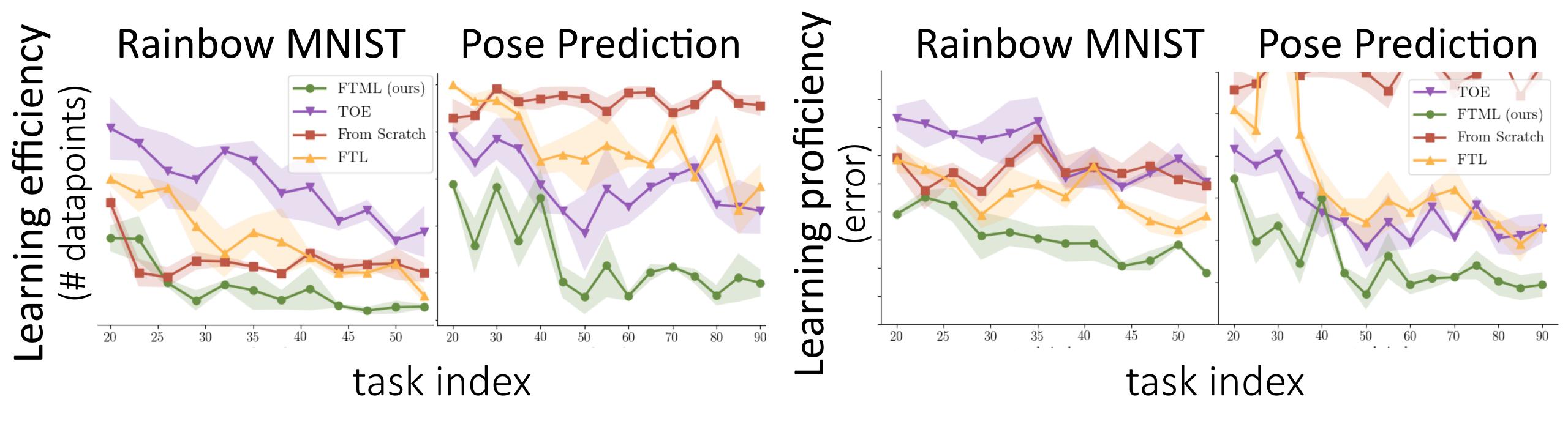
Learning proficiency (error)

task index

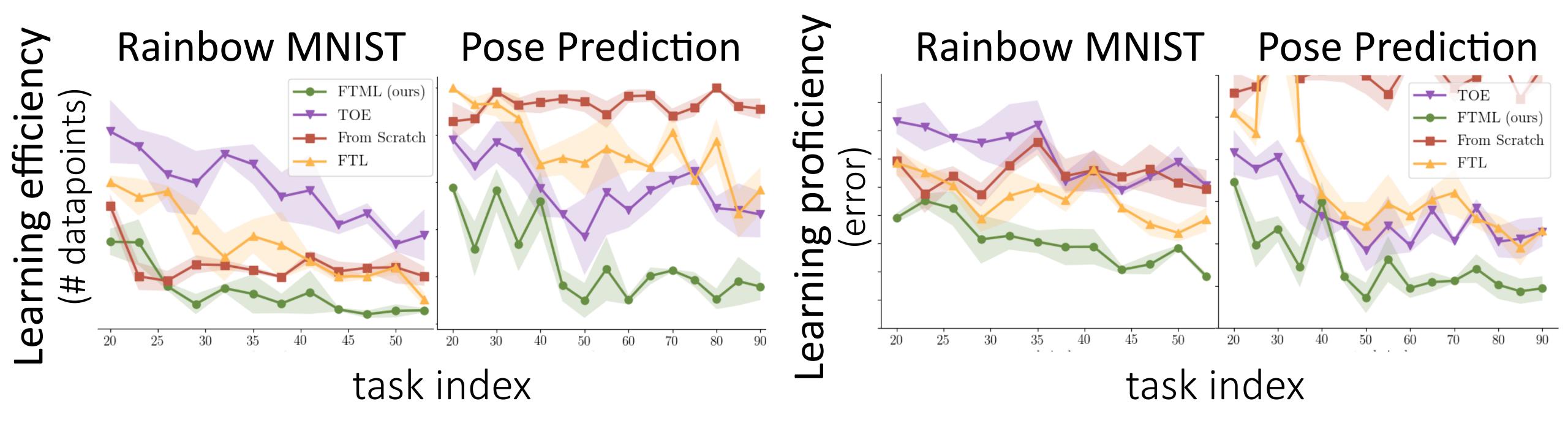
task index



FTML (ours)



FTML (ours)
learns each new task faster & with greater proficiency,



FTML (ours)

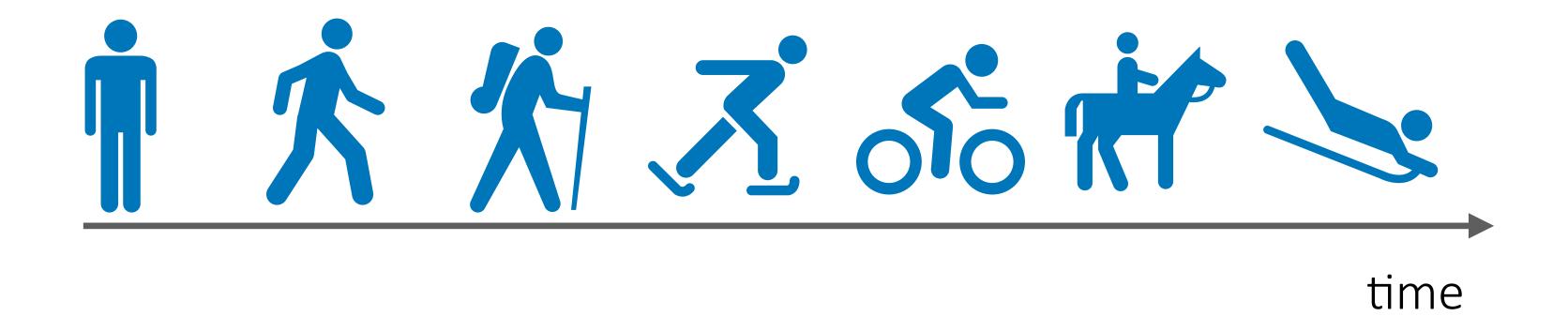
learns each new task faster & with greater proficiency, approaches few-shot learning regime

### Takeaways

Introduced online meta-learning problem formulation

Meta-learning is effective in non-stationary settings

Similar guarantees to online learning, but better empirical performance



For more, come see us at poster #5!