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In many practical situations:
Learn new task with only a few datapoints
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Meta-Learning
(Schmidhuber et al. 87, Bengio et al. '92)

Given i.i.d. task distribution,
learn a new task efficiently
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Given i.i.d. task distribution,
learn a new task efficiently
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Online Meta-Learning learn learn learn learn learn learn learn

L J ® [ O o
(this work) ﬂ J / ® Hr
Efficiently learn a sequence of tasks w A./ \.Z. 0‘6 &

from a non-stationary distribution. Hme
performance after seeing a small amount of data
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The Online Meta-Learning Setting

Space of parameters # € © C R? and loss functions ¢: © — R
For round ¢t € {1,2,...00}:

0, = 0, — aVi,(6,)
1. World picks a loss function ¢, ()

2. Agent should pick 6; without knowledge of ¢,
3. Agent uses update procedure ®; : © — ©, and obtains ét = O, (6;)
4. Agent suffers Zt(ét) for the round

Loss of best algorithm

Loss of algorithm in hindsight

T T
Goal: Learning algorithm with sub-linear Regret, := Z 01 (P4(6:)) — min Z Ui (P4(6))

t=1 t=1
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Follow the Meta-Leader (FTML): 0, ; = arg min Z Ui (Py(0))
0

Can be implemented with MAML

Theorem (Informal): If {¢;(-),0,(-)} ¥t are C2-smooth and strongly convex,
the sequence of models {61,065, ...,0r} returned by FTML has the property:

78
RegretT L= Z gt (q)t (Ht IHIéchal Z gt (I)t (lOg T)

Regret -

" >0 as 1 — o0

—> Avg. Regret =

Learning in a sequential non-stationary setting, but still competitive
with best meta-learner in hindsight!
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FTML: practical instantiation of our approach, extending MAML!
meta-train on all data so far, fine-tune on current task

Example pose prediction tasks

Experiment with sequences of tasks: olane
- Colored, rotated, scaled MNIST
- 3D object pose prediction car
- CIFAR-100 classification

chair

11 Finn et al. ICML 17
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Learning efficiency
(# datapoints)
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Takeaways

Introduced online meta-learning problem formulation
Meta-learning is effective in non-stationary settings

Similar guarantees to online learning, but better empirical performance
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For more, come see us at poster #5!



