ICML | 2019

TapNet: Neural Network Augmented with
Task-Adaptive Projection for Few-Shot Learning

Sung Whan Yoon (presenter), Jun Seo and Jaekyun Moon

Jun 11 @ ICML 2019

I(AI ST Efgc(’;:‘)ilcgf Engineering

KA' ST Korea Advanced Institute of Science and Technology MOO"Lab




ICML | 2019

Few-Shot Learning

* Handling previously unseen classification tasks (episodes)
* Training model with widely varying episodes (episodic training) [Vinyals et al., 2016]
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TapNet: Task-Adaptive Projection Network

= Model description (three key elements)
* Feature extractor fy
* Learnable reference vectors ® = [¢; - ; Py]

* Task-adaptive projection space M
» Project references @ and embedded queries to M, and apply metric-based classification

task-specific conditioning
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How to Construct Projection Space M

= Construction of projection space via linear nulling
* Error vector between per-class average ¢, and reference ¢, should be zero-forced in M.
* For every episode, compute M = null([e;; €;; €5; €4; €]) anew
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Classification and Learning

= Classifying in the task-adaptive space
* Project ® and embedded queries to M — Classify the projected queries with projected ®.
* Loss based on distance in M is used to update fg and ®
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Observations

" Projection space gives better separation of classes

= Reference vector tips actually grow apart with training
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Results and Conclusions

" Non-learning-based and explicit task-adaptation method

= Excellent generalization performance
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Visit Poster #4 in Pacific Ballroom for further results!
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Methods I

1-shot

5-shot

Matching Nets (Vinyals et al., 2016)

MAML (Finn et al., 2017)

Prototypical Nets (Snell et al., 2017)

SNAIL (Mishra et al., 2017)

adaResNet (Munkhdalai et al., 2018)
Transductive Propagation Nets (Liu et al., 2018)
TADAM-« (Oreshkin et al., 2018)

TADAM-TC (Oreshkin et al., 2018)

43.56 + 0.84%
48.70 £ 1.84%
49.42 £0.78%
55.71 £ 0.99%
56.88 £ 0.62%
55.51 £0.86%
56.8 +0.3%
58.5 £ 0.3%

55.31 +£0.73%
63.15 £ 091%
68.20 + 0.66%
68.88 + 0.92%
71.94 £ 0.57%
69.86 £ 0.65%
75.7 + 0.2%
76.7 + 0.3%

TapNet (Ours) 61.65 = 0.15% 76.36 £ 0.10%
H S-way tieredIlmageNet
Methods ‘ ‘ 1-shot 5-shot

MADML (as evaluated in (Liu et al., 2018))
Prototypical Nets (as evaluated in (Liu et al., 2018))
Relation Nets (as evaluated in (Liu et al., 2018))
Transductive Propagation Nets (Liu et al., 2018)

TapNet (Ours)

51.67 = 1.81%
53.31 £ 0.89%
54.48 +£0.93%
59.91 = 0.94%
63.08 £ 0.15%

70.30 = 1.75%
72.69 £ 0.74%
71.31 £0.78%
73.30 = 0.75%
80.26 + 0.12%
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