Manifold Mixup Alex Lamb*, Vikas Verma*, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, Yoshua Bengio #### Troubling Properties of Deep Networks #### Issues with Current Methods - Real data points occupy large volume in the space - Decision boundary is close to the data - Data points from off the manifold occupy region overlapping with real data points # Improving Representations with Manifold Mixup - Simple Algorithm just a few lines of code - Great Results - Surprising Properties backed by rigorous theory #### Manifold Mixup - Simple Algorithm - On each update, select a random layer uniformly (including the input). - Sample $\lambda \sim \text{Beta}(\alpha, \alpha)$ - Mix between two random examples from the minibatch at the selected layer with weights λ and $(1-\lambda)$. - Mix the labels for those two examples in the same way to construct a soft target, yielding the manifold mixup loss, which compares the soft target with the output obtained with the mixed layer. #### Manifold Mixup - Great Results | PreActResNet18 | Test Error (%) | Test NLL | PreActResNet18 | Test Error (%) | Test NLL | |---------------------------------|------------------|-------------------------------|---------------------------------|-------------------|-------------------| | No Mixup | 4.83 ± 0.066 | 0.190 ± 0.003 | No Mixup | 24.01 ± 0.376 | 1.189 ± 0.002 | | AdaMix‡ | 3.52 | NA | AdaMix‡ | 20.97 | n/a | | Input Mixup† | 4.20 | NA | Input Mixup† | 21.10 | n/a | | Input Mixup ($\alpha = 1$) | 3.82 ± 0.048 | 0.186 ± 0.004 | Input Mixup ($\alpha = 1$) | 22.11 ± 0.424 | 1.055 ± 0.006 | | Manifold Mixup ($\alpha = 2$) | 2.95 ± 0.046 | 0.137 ± 0.003 | Manifold Mixup ($\alpha = 2$) | 20.34 ± 0.525 | 0.912 ± 0.002 | | PreActResNet34 | | | PreActResNet34 | | | | No Mixup | 4.64 ± 0.072 | 0.200 ± 0.002 | No Mixup | 23.55 ± 0.399 | 1.189 ± 0.002 | | Input Mixup ($\alpha = 1$) | 2.88 ± 0.043 | 0.176 ± 0.002 | Input Mixup ($\alpha = 1$) | 20.53 ± 0.330 | 1.039 ± 0.045 | | Manifold Mixup ($\alpha = 2$) | 2.54 ± 0.047 | $\underline{0.118 \pm 0.002}$ | Manifold Mixup ($\alpha = 2$) | 18.35 ± 0.360 | 0.877 ± 0.053 | | Wide-Resnet-28-10 | | | Wide-Resnet-28-10 | | | | No Mixup | 3.99 ± 0.118 | 0.162 ± 0.004 | No Mixup | 21.72 ± 0.117 | 1.023 ± 0.004 | | Input Mixup ($\alpha = 1$) | 2.92 ± 0.088 | 0.173 ± 0.001 | Input Mixup ($\alpha = 1$) | 18.89 ± 0.111 | 0.927 ± 0.031 | | Manifold Mixup ($\alpha = 2$) | 2.55 ± 0.024 | 0.111 ± 0.001 | Manifold Mixup ($\alpha = 2$) | 18.04 ± 0.171 | 0.809 ± 0.005 | | (a) CIFAR-10 | | | (b) CIFAR-100 | | | | | | | | | | Massive gains on likelihood Also works on SVHN, Tiny-Imagenet, Imagenet # Manifold Mixup - Great Results (external) - Other labs have gotten great results with Manifold Mixup - Handwriting Recognition (Moysset and Massina, ICDAR 2019) - Convnets without Batch Normalization (Defazio & Bottou 2018) - Prostate Cancer Segmentation with U-Net (Jung 2019) #### Manifold Mixup - Surprising Properties Hidden Space # Manifold Mixup - Theory Justifying Properties - When the manifold mixup loss is perfectly satisfied on a layer, the rest of the network becomes an implicit linear model, which we can call A. - This can only be satisfied when dim(H) >= d 1. - The representations H have dim(H) d + 1 degrees of freedom. - Implications: fitting the manifold mixup objective exactly is feasible in later layers, and concentrates the representations such that they have zero measure. # What can Manifold Mixup do for you (applied)? - Massively improved likelihood, so any classification task where you use the probabilities will probably be helped. - Tasks with small amounts of labeled data - May also help with outliers / out-of-distribution, but needs to be studied more # What can you do for Manifold Mixup (theory)? - Our theory makes very precise assumptions, can these be relaxed? - Is there a way to generalize mixing to multiple layers or to RNNs (and understand it)? - Lots of broader work on spectral properties of learned representations: - "An analytic theory of generalization dynamics and transfer learning in deep linear networks" (Lampinen and Ganguli 2019) - Would be great to explicitly connect to Manifold Mixup! #### Questions? - Also if you have any questions, are curious about applying Manifold Mixup, or want to collaborate, reach out to: - o <u>vikasverma.iitm@gmail.com</u> - o <u>lambalex@iro.umontreal.ca</u>