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Introduction & Motivations

Aim: apply Graph Neural Networks (GNN) to settings in which an

input graph is not available (or it is incomplete/nosiy)
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LDS: Jointly Learning Structure and Parameters

Formulation: bilevel programming problem (gradient-based HPO)

with discrete random variables ⇒ discrete and sparse graph

Aτ~Pθ

θ ...  wt+1= Φ(wt,A1) = wt - γ∇Lt(wt,A1)

 wt+τ= wt+τ-1 - γ∇Lt+τ-1(wt+τ-1,Aτ)
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See Franceschi et al. Forward and Reverse Gradient-based Hyperparameter Optimization, ICML 2017 2



Experiments: Semi-supervised Learning
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Many Thanks!

Poster # 177

Github page: https://github.com/lucfra/LDS

Some learned representations by a GCN on Citeseer

Dense Graph kNN Graph LDS graph
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https://github.com/lucfra/LDS

