Open Vocabulary Learning on Source Code
with a Graph-Structured Cache

Milan Cvitkovic Badal Singh Anima Anandkumar
Caltech, Amazon Web Services Amazon Web Services Caltech

ICML, 2019-6-12

Open Vocabulary Learning

Goal: Models that can reason over flexible sets of inputs and outputs

Standard, closed vocabulary model Open vocabulary

1 of 400k word embeddings — 1 of 400k words Any words — Any words

Open Vocabulary Learning

Motivation: Tasks on source code
Example: Variable naming

Input
int <NAME-ME>
= assertArraysAreSamelLength(expected, Output
actuals, header); D>
for (int i = @; i < <NAME-ME>; i++) { expected_length
Object expected

= Array.get(expected, 1i);

Needs an open vocabulary

In our data, 28% of variable names contain out-of-vocabulary word

Graph-Structured Cache

Strategy: Represent distinct words and usages with graph structure, process with GNN

o _ def get_jupyter_addr():
Original input jupyter_addr = ‘localhost’ if is_serving() else None
return jupyter_addr

(iupyter] ((got| (adr) [(sorving

| - ;E% § Edge Indicating W
Same input, represented using a \“d'cat'"g ord Use
Graph-Structured Cache <word> Pewordy{ <worg> [{ <vpra> |

[<word>\‘]->[<word> H»[<word>]—-[<word>][<word>]-[<word>]—»[<word>]—{<word>]

[sword> | <word> }{ <wora> | Edge Indicating Next Word

Full Model for Tasks on Source Code

Strategy from recent work [1]

A

Input

/** SomeFile.java

public void addFoo(Foo foo){
this.myBaz.add(foo0);

Field
Reference

Method Declaration
P AN \
Il: (add Foo ,

Parameter |:> >
Next Node
g AN

{ foo ,
~—-

{‘ ~m_yBa_Z/\ l\j?-o'\’ Last Use
Parse code Augment AST with
into AST semantic information

[1] Allamanis et al

. “Learning to Represent Programs with Graphs.” ICLR 2018

Full Model for Tasks on Source Code

Input

/** SomeFile.java &

Field
Reference

Method Declaration

- -

(/add Foo\) >

public void addFoo(Foo foo){ > S e >

this.myBaz.add(foo); N NoT |::> foo
; add

------------------------------- - - baz

\ ~m_y?a.2/\ l*f?-o” Last Use Word Use
Parse code Augment AST with Add Graph-Structured
into AST semantic information Cache

Our main contribution to prior work

Full Model for Tasks on Source Code

Input

/** SomeFile.java &

Field
Reference

Method Declaration

- -

Output
|:> foo |:> (Depends on task)

public void addFoo(Foo foo){ |:> (\idf-Fcio) |:> 2
this.myBaz.add(foo0); Next Node
; add
------------------------------- - baz
{‘ ~m_y?a.2/\ l*f?-o” Last Use Word Use
Parse code Augment AST with Add Graph-Structured Convert all nodes to vectors,

into AST semantic information Cache process with GNN

Experiment: Variable Naming Task

e Full-name reproduction accuracy (and top 5 accuracy):

Closed Vocab CharCNN Pointer Sentinel GSC
N — AST 0.23 (0.31) 0.22 (0.28) 0.19 (0.33) 0.49 (0.67)
P AugAST 0.19 (0.26) 0.20 (0.27) 0.26 (0.40) 0.53 (0.69)
ir T p— AST 0.05 (0.07) 0.06 (0.09) 0.06 (0.11) 0.38 (0.53)
P AugAST 0.04 (0.07) 0.06 (0.08) 0.08 (0.14) 0.41 (0.57)

For other tasks and experiments, see our poster or paper

Takeaways

Graph-Structured Caches are an appealing strategy for open vocabulary learning

o Whatever your current embedding strategy, GSC + GNN can augment it
o No freelunch! About 30% training slowdown.
o But helps in all cases we tried, sometimes significantly

Acknowledgments

e Badal Singh, Anima Anandkumar

e Miltos Allamanis
e Hyokun Yun
e Haibin Lin

Our code, for use on your code

https://github.com/mwcvitkovic/Open-Vocabulary-Learning-on-Source-Code-with-a-Graph-Structured-Cache--Code-Preprocessor

https://github.com/mwcvitkovic/Open-Vocabulary-Learning-on-Source-Code-with-a-Graph-Structured-Cache

https://github.com/mwcvitkovic/Open-Vocabulary-Learning-on-Source-Code-with-a-Graph-Structured-Cache--Code-Preprocessor
https://github.com/mwcvitkovic/Open-Vocabulary-Learning-on-Source-Code-with-a-Graph-Structured-Cache

