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Motivation

* The neighborhood of a node is formed due to many latent factors.

Latent factor: Family

Latent factor: Work Latent factor: Hobby

* Existing GCNs convolute the neighborhood as a whole.
* They do not distinguish between the latent factors.
* Their node representations are thus not robust, and hardly interpretable.



Disentangled GCNs

* Disentangled representation learning aims to identify and separate the underlying
explanatory factors behind the observed data (Bengio et al., 2013).

-------- Feed back to improve neighborhood routing.
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* We identify the latent factors, and segment the neighborhood accordingly.
* Each segment is related with an isolated factor, and is convoluted separately.



Neighborhood Routing

* We propose neighborhood routing, to segment a neighborhood.
* Dynamic & differentiable. Similar to capsule networks’ dynamic routing.

e Phase I: e Phase II:

* To extract factor-specific features. * To infer the factor that causes the link

_ between node u and a neighbor v.
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» ¢, describes the neighborhood’s aspect k.
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Intuitions & Theories

* The two intuitions behind neighborhood routing:

 p(Factor k is the one that causes the links between node u and a segment) <
The segment contains a large number of nodes that are similar w.r.t. aspect k.

* p(Factor k is the one that causes the link between node u and a neighbor) o
Node u and the neighbor are similar w.r.t. aspect k.

* Neighborhood routing 1s equivalent to an EM algorithm that performs
inference under a von Mises-Fisher subspace clustering model.

* It finds one large cluster in each of the K subspaces.



Results: Multi-label Node Classification
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Figure 2. Macro-F1 and Micro-F1 scores on the multi-label classification tasks. Our approach consistently outperforms the best performing
baselines by a large margin, reaching 10% to 20% relative improvement in most cases.
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Results: Disentangled Node Representations

* Correlations between the 64 dimensions, on a graph with eight factors.
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(b) DisenGCN (this work).



